Skip to main content
Log in

Hydrodynamic and hydromagnetic stability of black holes with radiative transfer

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Subrahmanyan Chandrasekhar (Chandra) was just eight years old when the first astrophysical jet was discovered in M87. Since then, jets have been uncovered with a wide variety of sources including accretion disks orbiting stellar and massive black holes, neutron stars, isolated pulsars, γ-ray bursts, protostars and planetary nebulae. This talk will be primarily concerned with collimated hydromagnetic outflows associated with spinning, massive black holes in active galactic nuclei. Jets exhibit physical processes central to three of the major research themes in Chandrasekhar’s research career – radiative transfer, magnetohydrodynamics and black holes. Relativistic jets can be thought of as ‘exhausts’ from both the hole and its orbiting accretion disk, carrying away the energy liberated by the rotating spacetime and the accreting gas that is not radiated. However, no aspect of jet formation, propagation and radiation can be regarded as understood in detail. The combination of new γ-ray, radio and optical observations together with impressive advances in numerical simulation make this a good time to settle some long-standing debates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D J Croton et al, Mon. Not. R. Astron. Soc. 365, 11 (2006)

    Article  ADS  Google Scholar 

  2. M C Begelman, R D Blandford and M J Rees, Rev. Mod. Phys. 56, 255 (1984)

    Article  ADS  Google Scholar 

  3. A H Bridle and R A Perley, Ann. Rev. Astron. Astrophys. 22, 319 (1984)

    Article  ADS  Google Scholar 

  4. K I Kellermann and I I K Pauliny-Toth, Ann. Rev. Astron. Astrophys. 19, 373 (1981)

    Article  ADS  Google Scholar 

  5. R D Blandford and A Levinson, Astrophys. J. 441, 79 (1995)

    Article  ADS  Google Scholar 

  6. V A Acciari et al, Science 325, 444 (2009)

    Article  ADS  Google Scholar 

  7. C C Cheung, D E Harris and L Stawartz, Astrophys. J. 663, 65 (2007)

    Article  ADS  Google Scholar 

  8. M Sikora, Ł Stawarz, R Moderski, K Nalewajko and G Madejski, Astrophys. J. 704, 38 (2009)

    Article  ADS  Google Scholar 

  9. J L Richards et al, Astrophys. J. Suppl. submitted (arXiv: 1011.3111) (2010)

  10. R A Laing and A H Bridle, Mon. Not. R. Astron. Soc. 336, 1161 (2002)

    Article  ADS  Google Scholar 

  11. G Fossati, L Maraschi, A Celotti, A Comastri and G Ghisellini, Mon. Not. R. Astron. Soc. 299, 433 (1998)

    Article  ADS  Google Scholar 

  12. K R Lind and R D Blandford, Astrophys. J. 295, 358 (1985)

    Article  ADS  Google Scholar 

  13. J Ahrens et al, Astropart. Phys. 20, 507 (2004)

    Article  ADS  Google Scholar 

  14. The Pierre AUGER Collaboration, J Abraham et al, Astropart. Phys. 29, 188 (2008)

    Article  ADS  Google Scholar 

  15. G B Taylor and R Zavala, Astrophys. J. 722, L183 (2010)

    Article  ADS  Google Scholar 

  16. A Tchekhovskoy, R Narayan and J C McKinney, New Astron. 15, 749 (2010)

    Article  ADS  Google Scholar 

  17. A A Abdo et al, Nature 463, 919 (2010)

    Article  ADS  Google Scholar 

  18. A P Marscher et al, Astrophys. J. 710, L126 (2010)

    Article  ADS  Google Scholar 

  19. A C Fabian et al, Mon. Not. R. Astron. Soc. 366, 417 (2006)

    Article  ADS  Google Scholar 

  20. L Sironi and A Spitkovsky, Astrophys. J. 698, 1523 (2009)

    Article  ADS  Google Scholar 

  21. S Zenitani and M Hoshino, Astrophys. J. 562, L63 (2001)

    Article  ADS  Google Scholar 

  22. S Koide, K Shibata, T Kudoh and D L Meier, Science 295, 1688 (2002)

    Article  ADS  Google Scholar 

  23. J-P De Villiers, J F Hawley and J H Krolik, Astrophys. J. 599, 1238 (2003)

    Article  ADS  Google Scholar 

  24. P C Fragile, O M Blaes, P Anninos and J D Salmonson, Astrophys. J. 668, 417 (2007)

    Article  ADS  Google Scholar 

  25. K Beckwith, J F Hawley and J H Krolik, Astrophys. J. 678, 1180 (2008)

    Article  ADS  Google Scholar 

  26. J C McKinney and R D Blandford, Mon. Not. R. Astron. Soc. 394, L126 (2009)

    Article  ADS  Google Scholar 

  27. M V Barkov and S S Komissarov, Mon. Not. R. Astron. Soc. 385, L28 (2008)

    Article  ADS  Google Scholar 

  28. A C Fabian, Ann. Rev. Astron. Astrophys. 32, 277 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  29. I J Parrish, E Quataert and P Sharma, Astrophys. J. 703, 96 (2009)

    Article  ADS  Google Scholar 

  30. R D Blandford and R L Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977)

    ADS  Google Scholar 

  31. S A Balbus and J F Hawley, Rev. Mod. Phys. 70, 1 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ROGER BLANDFORD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BLANDFORD, R., McKINNEY, J.C. & ZAKAMSKA, N. Hydrodynamic and hydromagnetic stability of black holes with radiative transfer. Pramana - J Phys 77, 53–66 (2011). https://doi.org/10.1007/s12043-011-0111-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0111-6

Keywords

PACS Nos

Navigation