Skip to main content
Log in

Substructures in Simulations of Relativistic Jet Formation

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We present a set of simulations of relativistic jets from accretion disk initial setup with numerical solutions of a system of general-relativistic magnetohydrodynamics (GRMHD) partial differential equations in a fixed black hole (BH) spacetime which is able to show substructures formations inside the jet as well as lobe formation on the jet head. For this, we used a central scheme of finite volume method without dimensional split and with no Riemann solvers namely the Nessyahu-Tadmor method. Thus, we were able to obtain stable numerical solutions with spurious oscillations under control and with no excessive numerical dissipation. Therefore, we developed some setups for initial conditions capable of simulating the formation of relativistic jets from the accretion disk falling onto central black hole until its ejection, both immersed in a magnetosphere. In our simulations, we were able to observe some substructure of a jet created from an accretion initial disk, namely, jet head, knots, cocoon, and lobe. Also, we present an explanation for cocoon formation and lobe formation. Each initial scenario was determined by ratio between disk density and magnetosphere density, showing that this relation is very important for the shape of the jet and its substructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. P. Anninos, P.C. Fragile, J.D. Salmonson, ApJ 635, 7 (1981)

    Google Scholar 

  2. X. Bai, J.M. Stone, ApJ 767, 30 (2013)

    Article  ADS  Google Scholar 

  3. J. Balbás, E. Tadmor, C.-C. Wu, J. Comput. Phys 201, 261 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. V.S. Beskin, Phys Uspekhi, IOP 53, 1199 (1997)

    Article  ADS  Google Scholar 

  5. V.S. Beskin. MHD Flows in compact astrophysical objects (Springer, Heidelberg, 2010)

    Book  MATH  Google Scholar 

  6. R.D. Blandford, MNRAS 199, 883 (1982)

    Article  ADS  Google Scholar 

  7. Bromberg O., et al., arXiv:1107.1326v1 (2011)

  8. S.K. Chakrabarti, Phys. Rep. 266, 229 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Ciardi, ApJ 691, L147 (2009)

    Article  ADS  Google Scholar 

  10. L. Del Zanna, et al., A& A 473, 11 (2007)

    Article  ADS  Google Scholar 

  11. A. Dedner, et al., J. Comput. Phys 175, 645 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Dennet-Thorne, et al., arXiv:astro-ph/9706279v2 (1997)

  13. H. Dimmelmeier, J. Novak, P. Cerdá-Durán, Coconut code (2008)

  14. S.S. Doeleman, et al., Science 338, 255 (2012)

    Article  Google Scholar 

  15. J.A. Font, Living Rev. Relativity, 11 (2008)

  16. J.A. Font, F. Daigne, MNRAS 334, 383 (2002)

    Article  ADS  Google Scholar 

  17. C.F. Gammie, J.C. McKinney, G. Toth, ApJ 589, 444 (2003)

    Article  ADS  Google Scholar 

  18. R.O. Garcia, Campinas University, Phd Thesis (2014)

  19. Garcia R.O., Oliveira S.R, arXiv:astro-ph/1602.02143v1 (2016)

  20. B. Giacomazzo, L. Rezzolla, Class. Quantum Grav 24, S235 (2007)

    Article  ADS  Google Scholar 

  21. J.L. Gómez, Mem. Soc. Astron. Italiana 79, 1157 (2008)

    ADS  Google Scholar 

  22. P. Hardee, Y. Mizuno, K.-I. Nishikawa, Ap& SS 311, 281 (2007)

    Article  ADS  Google Scholar 

  23. M. Hedley, M.K. Yau, Mon. Wea. Rev. 116, 9 (1988)

    Article  Google Scholar 

  24. W. Hundsdorfer, J.G. Verwer, Numerical solution of time-dependent advection-diffusion-rection equations (Springer, New York, 2003)

    Book  MATH  Google Scholar 

  25. A.L. King, et al., Nature Phys. 12, 772 (2016)

    Article  ADS  Google Scholar 

  26. S. Koide, K. Shibata, T. Kudoh, ApJ 522, 727 (1999)

    Article  ADS  Google Scholar 

  27. S. Koide, General relativistic plasmas around rotating black holes. Procedings IAU Symposium, p. 275 (2011)

  28. S.S. Komissarov, et al., MNRAS. 394, 1182 (2009)

    Article  ADS  Google Scholar 

  29. S.S. Komissarov, O. Porth, M. Lyutikov, Computational astrophysics and cosmology. 2, 9 (2015)

    Article  ADS  Google Scholar 

  30. R.J. Leveque. Finite volume methods for hyperbolic problems (Cambridge University Press, New York, 2002)

    Book  MATH  Google Scholar 

  31. Massi, Mem. S.A. It. 75, 282 (2010)

  32. I. Marti-Vidal, et al., Science 348, 311 (2015)

    Article  ADS  Google Scholar 

  33. J.C. McKinney, R.D. Blandford, MNRAS 394, L126 (2009)

    Article  ADS  Google Scholar 

  34. A. Mignone, J.C. McKinney, MNRAS 378, 1118 (2007)

    Article  ADS  Google Scholar 

  35. Mizuno Y., et al., arXiv:astro-ph/0609344v1 (2006)

  36. P Mösta, et al., Class. Quantum Grav., 31 (2014)

  37. H. Nessyahu, E. Tadmor, J. Comput. Phys. 87, 2 (1990)

    Article  Google Scholar 

  38. K.-I. Nishikawa, et al., ApJ 625, 60 (2005)

    Article  ADS  Google Scholar 

  39. W.H. Press, et al. Numerical recipes in Fortran 90 (Cambridge University Press, New York, 1997)

    Google Scholar 

  40. M.J.D. Powell, Approximation theory and methods (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  41. V. Schneider, et al., J. Comput. Phys. 105(1), 92 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  42. H. Sol, G. Pelletier, E. Asseo, MNRAS. 237, 411 (1989)

    Article  ADS  Google Scholar 

  43. A. Tchekhovskoy, J.C. McKinney, R. Narayan, MNRAS 379, 469 (2007)

    Article  ADS  Google Scholar 

  44. Tchekhovskoy A., Bromberg O, MNRAS, doi:10.1093/mnrasl/slw064(2016)

  45. J.W. Thomas, Numerical partial differential equations: finite difference methods (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  46. K.S. Thorne, R.H. Price, D.A. MacDonald, Black holes: the membrane paradigm (Yale University Press, New Haven, 1986), p. 1986

    Google Scholar 

  47. G. Tóth, J. Comput. Phys. 161(2), 605 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  48. R.M. Wald, Phys. Rev. D. 10, 16 (1974)

    Google Scholar 

  49. Walg S., et al., MNRAS, doi:10.1093/mnras/stt823 (2013)

  50. D.M. Worral, MNRAS. 380, 2 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael de Oliveira Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, R.d.O., Oliveira, S.R.d. Substructures in Simulations of Relativistic Jet Formation. Braz J Phys 47, 197–214 (2017). https://doi.org/10.1007/s13538-017-0489-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0489-9

Keywords

Navigation