Skip to main content

Advertisement

Log in

Chemical potential and internal energy of the noninteracting Fermi gas in fractional-dimensional space

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Chemical potential and internal energy of a noninteracting Fermi gas at low temperature are evaluated using the Sommerfeld method in the fractional-dimensional space. When temperature increases, the chemical potential decreases below the Fermi energy for any dimension equal to 2 and above due to the small entropy, while it increases above the Fermi energy for dimensions below 2 as a result of high entropy. The ranges of validity of the truncated series expansions of these quantities are extended from low to intermediate temperature regime as well as from high to relatively low density regime by using the Padé approximant technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A L Fetter and J D Walecka, Quantum theory of many-particle system (McGraw-Hill, New York, 1971)

    Google Scholar 

  2. R K Patheria, Statistical mechanics (Pergamon, Oxford, 1972)

    Google Scholar 

  3. A Sommerfeld, Z. Phys. 47, 1 (1928)

    Article  ADS  Google Scholar 

  4. E Kiess, Am. J. Phys. 55, 1006 (1987)

    Article  ADS  Google Scholar 

  5. V C Aguilera-Navarro, G A Estevez and W Solano-Torres, Am. J. Phys. 59, 452 (1991)

    Article  ADS  Google Scholar 

  6. E Cetina, F Magana and A A Valladares, Am. J. Phys. 45, 960 (1977)

    Article  ADS  Google Scholar 

  7. W A Barker, J. Math. Phys. 27, 302 (1986); 28, 1385, 1389 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  8. M H Lee, J. Math. Phys. 36, 1217 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  9. G A Baker, Pade approximation (Encyclopedia of Mathematics and its Applications) (Addition-Wesley, Reading, MA, 1981) Part-1

    Google Scholar 

  10. A Chatterjee, Phys. Lett. A135, 380 (1989)

    ADS  Google Scholar 

  11. M H Lee, J. Math. Phys. 30, 1837 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  12. M Apostol, Phys. Rev. E56, 4854 (1997)

    ADS  Google Scholar 

  13. M H Lee, Phys. Rev. E54, 946 (1996)

    ADS  Google Scholar 

  14. H Ishida, J. Phys. Soc. Jpn 55, 4396 (1986)

    Article  ADS  Google Scholar 

  15. X F He, Phys. Rev. B42, 2083 (1991)

    Google Scholar 

  16. P Lefebvre, P Christol and H Mathieu, Phys. Rev. B46, 13603 (1992)

    ADS  Google Scholar 

  17. A Matos-Abiague, Phys. Rev. B65, 165321 (2002)

    ADS  Google Scholar 

  18. A Thilagam and A Matos-Abiague, J. Phys.: Condens. Matter 16, 3981 (2004)

    Article  ADS  Google Scholar 

  19. S Panda and B K Panda, J. Phys.: Condens. Matter 20, 485201 (2008)

    Article  Google Scholar 

  20. K F Karlsson, M-A Dupertuis, H Weman and E Kapon, Phys. Rev. B70, 153306 (2004)

    ADS  Google Scholar 

  21. L Salasnich, J. Math. Phys. 41, 8016 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. A S Alexandrov, Physica C363, 231 (2001)

    ADS  Google Scholar 

  23. Z Bak, Phys. Rev. B68, 064511 (2003)

    MathSciNet  ADS  Google Scholar 

  24. T Zavada, N Südland, R Kimmich and T F Nonnenmacher, Phys. Rev. E60, 1292 (1999)

    ADS  Google Scholar 

  25. F H Stillinger, J. Math. Phys. 18, 1224 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  26. T Vazifehshenas and S Ghasem, Eur. Phys. J. B65, 1434 (2008)

    Google Scholar 

  27. M Grether, M de Liano and M A Solis, Eur. Phys. J. D25, 287 (2003)

    ADS  Google Scholar 

  28. S Wolfram, The mathematica book (Cambridge University Press, London, 1996)

    MATH  Google Scholar 

  29. G Cook and R H Dickerson, Am. J. Phys. 63, 737 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Panda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panda, S., Panda, B.K. Chemical potential and internal energy of the noninteracting Fermi gas in fractional-dimensional space. Pramana - J Phys 75, 393–402 (2010). https://doi.org/10.1007/s12043-010-0125-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0125-5

Keywords

Navigation