Skip to main content
Log in

Overview of the JYFLTRAP mass measurements and high-precision Q-values for weak interaction studies

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The JYFLTRAP Penning trap set-up at the University of Jyväskylä, Finland is a Penning trap facility that has provided high-precision atomic mass values for short-lived nuclides since 2003. Until now, masses of more than 250 short-lived nuclides have been measured. Since JYFLTRAP is coupled to the chemically insensitive IGISOL mass separator, any element can be accessed. So far, a huge mass surface extending from magnesium (Z = 12) to lead (Z = 82) has been covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  2. A Jokinen et al, Int. J. Mass Spectrom. 251, 204 (2006)

    Article  ADS  Google Scholar 

  3. U Hager et al, Phys. Rev. Lett. 96, 042504 (2006)

    Article  ADS  Google Scholar 

  4. J Äystö, Nucl. Phys. A693, 477 (2001)

    ADS  Google Scholar 

  5. T Eronen et al, Phys. Rev. Lett. 103, 252501 (2009)

    Article  ADS  Google Scholar 

  6. S Rahaman et al, Phys. Lett. B662, 111 (2008)

    ADS  Google Scholar 

  7. S Rahaman et al, Phys. Rev. Lett. 103, 042501 (2009)

    Article  ADS  Google Scholar 

  8. J Huikari et al, Nucl. Instrum. Methods Phys. Res. Sect. B222, 632 (2004)

    Article  ADS  Google Scholar 

  9. T Eronen et al, Phys. Lett. B636, 191 (2006)

    ADS  Google Scholar 

  10. T Eronen et al, Phys. Rev. C79, 032802 (2009)

    ADS  Google Scholar 

  11. T K Nieto et al, Phys. Rev. C80, 035502 (2009)

    ADS  Google Scholar 

  12. I Matea et al, Eur. Phys. J. A37, 151 (2008)

    Google Scholar 

  13. A Kankainen et al, Eur. Phys. J. A29, 271 (2006)

    ADS  Google Scholar 

  14. A Nieminen et al, Nucl. Instrum. Methods Phys. Res. Sect. A469, 244 (2001)

    Article  ADS  Google Scholar 

  15. G Savard et al, Phys. Lett. A158, 247 (1991)

    ADS  Google Scholar 

  16. V S Kolhinen et al, Nucl. Instrum. Methods Phys. Res. Sect. A528, 776 (2004)

    Article  ADS  Google Scholar 

  17. T Eronen et al, Nucl. Instrum. Methods Phys. Res. Sect. B266, 4527 (2008)

    Article  ADS  Google Scholar 

  18. G Gräff, H Kalinowsky and J Traut, Z. Phys. A297, 35 (1980)

    ADS  Google Scholar 

  19. M König et al, Int. J. Mass Spectrom. Ion Processes 142, 95 (1995)

    Article  ADS  Google Scholar 

  20. K Blaum et al, J. Phys. B: At. Mol. Opt. Phys. 36, 921 (2003)

    Article  ADS  Google Scholar 

  21. V-V Elomaa et al, Nucl. Instrum. Methods Phys. Res. Sect. A612, 97 (2009)

    Article  ADS  Google Scholar 

  22. G Gabrielse, Int. J. Mass Spectrom. 279, 107 (2009)

    Article  ADS  Google Scholar 

  23. M Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007)

    Article  ADS  Google Scholar 

  24. S George et al, Int. J. Mass Spectrom. 264, 110 (2007)

    Article  ADS  Google Scholar 

  25. J C Hardy and I S Towner, Phys. Rev. C79, 055502 (2009)

    ADS  Google Scholar 

  26. A Kellerbauer et al, Phys. Rev. Lett. 93, 072502 (2004)

    Article  ADS  Google Scholar 

  27. J C Hardy and I S Towner, Phys. Rev. C71, 055501 (2005)

    ADS  Google Scholar 

  28. G Savard et al, Phys. Rev. Lett. 95, 102501 (2005)

    Article  ADS  Google Scholar 

  29. T Eronen et al, Phys. Rev. Lett. 97, 232501 (2006)

    Article  ADS  Google Scholar 

  30. T Eronen et al, Phys. Rev. Lett. 100, 132502 (2008)

    Article  ADS  Google Scholar 

  31. H Vonach et al, Nucl. Phys. A278, 189 (1977)

    ADS  Google Scholar 

  32. T Faestermann et al, Eur. Phys. J. A42, 339 (2009)

    ADS  Google Scholar 

  33. S D Hoath et al, Phys. Lett. B51, 345 (1974)

    ADS  Google Scholar 

  34. J C Hardy et al, Phys. Rev. Lett. 33, 320 (1974)

    Article  ADS  Google Scholar 

  35. G T A Squier et al, Phys. Lett. B65, 122 (1976)

    ADS  Google Scholar 

  36. J Hakala et al, Phys. Rev. Lett. 101, 052502 (2008)

    Article  ADS  Google Scholar 

  37. U Hager et al, Nucl. Phys. A793, 20 (2007)

    ADS  Google Scholar 

  38. U Hager et al, Phys. Rev. C75, 064302 (2007)

    ADS  Google Scholar 

  39. S Rahaman et al, Eur. Phys. J. A32, 87 (2007)

    ADS  Google Scholar 

  40. S Rahaman et al, Eur. Phys. J. A34, 5 (2007)

    ADS  Google Scholar 

  41. P Campbell et al, Phys. Rev. Lett. 89, 082501 (2002)

    Article  ADS  Google Scholar 

  42. C Weber et al, Phys. Rev. C78, 054310 (2008)

    ADS  Google Scholar 

  43. V-V Elomaa et al, Phys. Rev. Lett. 102, 252501 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Eronen.

Additional information

for the JYFLTRAP Collaboration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eronen, T. Overview of the JYFLTRAP mass measurements and high-precision Q-values for weak interaction studies. Pramana - J Phys 75, 333–341 (2010). https://doi.org/10.1007/s12043-010-0120-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0120-x

Keywords

Navigation