Skip to main content
Log in

Multi-reaction-channel fitting calculations in a coupled-channel model: Photoinduced strangeness production

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

To describe photo- and meson-induced reactions on the nucleon, one is faced with a rather extensive coupled-channel problem. Ignoring the effects of channel coupling, as one would do in describing a certain reaction at the tree level, invariably creates a large inconsistency between the different reactions that are described. In addition, the imaginary parts of the amplitude, which are related through the optical theorem, to total cross-sections, are directly reflected in certain polarization observables. Performing a full coupled-channel calculation thus offers the possibility to implement the maximum number of constraints. The drawback one is faced with is to arrive at a simultaneous fit of a large number of reaction channels. While some of the parameters are common to many reactions, one is still faced with the challenge to optimize a large number of parameters in a highly non-linear calculation. Here we show that such an approach is possible and present some results for photoinduced strangeness production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Usov and O Scholten, Phys. Rev. C72, 025205 (2005)

    ADS  Google Scholar 

  2. A Usov and O Scholten, Phys. Rev. C74, 015205 (2006)

    ADS  Google Scholar 

  3. A Yu Korchin, O Scholten and R G E Timmermans, Phys. Lett. B438, 1 (1998)

    ADS  Google Scholar 

  4. G Penner and U Mosel, Phys. Rev. C66, 055211 (2002); 66, 055212 (2002)

    ADS  Google Scholar 

  5. G Penner, Vector meson production and nucleon resonance analysis in a coupled channel approach, Ph.D. thesis (in English) (Universität Giessen, 2002), available at the URL http://theorie.physik.uni-giessen.de

  6. V Shklyar, H Lenske, U Mosel and G Penner, Phys. Rev. C71, 055206 (2005)

    ADS  Google Scholar 

  7. S Kondratyuk and O Scholten, Nucl. Phys. A677, 396 (2000)

    ADS  Google Scholar 

  8. S Kondratyuk and O Scholten, Phys. Rev. C62, 025203 (2000)

    ADS  Google Scholar 

  9. S Kondratyuk and O Scholten, Phys. Rev. C65, 038201; ibid. Phys. Rev. C64, 024005 (2001)

    Google Scholar 

  10. T Sato and T-S H Lee, Phys. Rev. C54, 2660 (1996)

    ADS  Google Scholar 

  11. M F M Lutz and E E Kolomeitsev, Nucl. Phys. A700, 193 (2002)

    ADS  Google Scholar 

  12. O Scholten et al, Acta Phys. Pol. B33, 847 (2002)

    ADS  Google Scholar 

  13. R Shyam and O Scholten, Phys. Rev. C78, 065201 (2008)

    ADS  Google Scholar 

  14. S Ozaki et al, Phys. Rev. C80, 035201 (2009)

    ADS  Google Scholar 

  15. A Yu Korchin and O Scholten, Phys. Rev. C68, 045206 (2003)

    ADS  Google Scholar 

  16. R M Davidson and R Workman, Phys. Rev. C63, 025210 (2001)

    ADS  Google Scholar 

  17. M Benmerrouche, N C Mukhopadhyay and J F Zhang, Phys. Rev. D51, 3237 (1995)

    ADS  Google Scholar 

  18. N C Mukhopadhyay and N Mathur, Phys. Lett. B444, 7 (1998)

    ADS  Google Scholar 

  19. R M Davidson, N Mathur and N C Mukhopadhyay, Phys. Rev. C62, 058201 (2000)

    ADS  Google Scholar 

  20. R Workman, R A Arndt and I I Strakovsky, Phys. Rev. C62, 048201 (2000)

    ADS  Google Scholar 

  21. R A Arndt, W J Briscoe, I I Strakovsky and R L Workman, Phys. Rev. C66, 055213 (2002)

    ADS  Google Scholar 

  22. Ya I Azimov, R A Arndt, I I Strakovsky and R L Workman, Phys. Rev. C68, 045204 (2003)

    ADS  Google Scholar 

  23. R A Arndt, W J Briscoe, I I Strakovsky and R L Workman, Phys. Rev. C72, 058203 (2005)

    ADS  Google Scholar 

  24. L Tiator, D Drechsel, G Knöchlein and C Bennhold, Phys. Rev. C60, 035210 (1999)

    ADS  Google Scholar 

  25. D Drechsel, O Hanstein, S S Kamalov and L Tiator, Nucl. Phys. A645, 145 (1999)

    ADS  Google Scholar 

  26. R Shyam, Phys. Rev. C75, 055201 (2007)

    ADS  Google Scholar 

  27. R Shyam, Phys. Rev. C60, 055213 (1999)

    ADS  Google Scholar 

  28. R Shyam, G Penner and U Mosel, Phys. Rev. C63, 022202(R) (2001)

    ADS  Google Scholar 

  29. R Shyam, Phys. Rev. C73, 035211 (2006)

    ADS  Google Scholar 

  30. Stijn Janssen, Jan Ryckbusch, Dimitri Debruyne and Tim Van Cauteren, Phys. Rev. C65, 015201 (2001)

    ADS  Google Scholar 

  31. D G Ireland, S Janssen and J Ryckebusch, Nucl. Phys. A740, 147 (2004)

    ADS  Google Scholar 

  32. The PORT3 library I used is available from the URL http://www.netlib.org/port/ readme

  33. K H Glander et al, Eur. Phys. J. A19, 251 (2004)

    ADS  Google Scholar 

  34. R Lawall et al, Eur. Phys. J. A24, 275 (2005)

    ADS  Google Scholar 

  35. R Bradford et al, Phys. Rev. C73, 035202 (2006)

    ADS  Google Scholar 

  36. R A Schumacher, Private communication (2009)

  37. J W C McNabb et al, Phys. Rev. C69, 042201 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Scholten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholten, O., Usov, A. Multi-reaction-channel fitting calculations in a coupled-channel model: Photoinduced strangeness production. Pramana - J Phys 75, 215–224 (2010). https://doi.org/10.1007/s12043-010-0110-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0110-z

Keywords

Navigation