Skip to main content
Log in

Inclusion of \(K\Lambda \) electroproduction data in a coupled channel analysis

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Exclusive electroproduction reactions provide an access to the structure of excited baryons. To extract electroproduction multipoles encoding this information, the Jülich–Bonn–Washington (JBW) analysis framework is extended to the analysis of differential cross sections in \(K\Lambda \) electroproduction. This update enlarges the scope of previous coupled-channel analyses of pions and eta mesons, with photoproduction reactions as boundary condition in all analyzed electroproduction reactions. Polarization observables are predicted and compared to recent CLAS data. The comparison shows the relevance of these data to pin down baryon properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The fit results in form of multipoles are available upon request from the authors.]

References

  1. D.G. Ireland, E. Pasyuk, I. Strakovsky, Photoproduction reactions and non-strange baryon spectroscopy. Prog. Part. Nucl. Phys. 111, 103752 (2020). https://doi.org/10.1016/j.ppnp.2019.103752. arXiv:1906.04228 [nucl-ex]

    Article  Google Scholar 

  2. A. Thiel, F. Afzal, Y. Wunderlich, Light baryon spectroscopy. Prog. Part. Nucl. Phys. 125, 103949 (2022). https://doi.org/10.1016/j.ppnp.2022.103949. arXiv:2202.05055 [nucl-ex]

    Article  Google Scholar 

  3. T. Mart, C. Bennhold, H. Haberzettl, An isobar model for the photoproduction and electroproduction of kaons on the nucleon. PiN Newslett. 16, 86 (2002)

    Google Scholar 

  4. V. Shklyar, H. Lenske, U. Mosel, A Coupled-channel analysis of K Lambda production in the nucleon resonance region. Phys. Rev. C 72, 015210 (2005). https://doi.org/10.1103/PhysRevC.72.015210. arXiv:nucl-th/0505010

  5. D. Drechsel, S.S. Kamalov, L. Tiator, Unitary Isobar Model - MAID2007. Eur. Phys. J. A 34, 69 (2007). https://doi.org/10.1140/epja/i2007-10490-6. arXiv:0710.0306 [nucl-th]

  6. A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Properties of baryon resonances from a multichannel partial wave analysis. Eur. Phys. J. A 48, 15 (2012). https://doi.org/10.1140/epja/i2012-12015-8. arXiv:1112.4937 [hep-ph]

    Article  ADS  Google Scholar 

  7. R.L. Workman, M.W. Paris, W.J. Briscoe, I.I. Strakovsky, Unified Chew-Mandelstam SAID analysis of pion photoproduction data. Phys. Rev. C 86, 015202 (2012). https://doi.org/10.1103/PhysRevC.86.015202. arXiv:1202.0845 [hep-ph]

    Article  ADS  Google Scholar 

  8. H. Kamano, S.X. Nakamura, T.S.H. Lee, T. Sato, Nucleon resonances within a dynamical coupled-channels model of \(\pi N\) and \(\gamma N\) reactions. Phys. Rev. C 88, 035209 (2013). https://doi.org/10.1103/PhysRevC.88.035209. arXiv:1305.4351 [nucl-th]

  9. D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, K. Nakayama, Photocouplings at the pole from pion photoproduction. Eur. Phys. J. A 50, 101 (2014). https://doi.org/10.1140/epja/i2014-14101-3. [Erratum: Eur.Phys.J.A 51, 63 (2015)], arXiv:1401.0634 [nucl-th]

  10. B. C. Hunt D. M. Manley, Partial-wave analysis of \(\gamma p \rightarrow K^+ \Lambda \) using a multichannel framework, Phys. Rev. C 99, 055204 (2019). https://doi.org/10.1103/PhysRevC.99.055204. arXiv:1804.07422 [nucl-ex]

  11. T. Burch, C. Gattringer, L.Y. Glozman, C. Hagen, D. Hierl, C.B. Lang, A. Schafer, Excited hadrons on the lattice: Baryons. Phys. Rev. D 74, 014504 (2006). https://doi.org/10.1103/PhysRevD.74.014504. arXiv:hep-lat/0604019

    Article  ADS  Google Scholar 

  12. J. Bulava, R.G. Edwards, E. Engelson, B. Joo, H.-W. Lin, C. Morningstar, D.G. Richards, S.J. Wallace, Nucleon, \(\Delta \) and \(\Omega \) excited states in \(N_f=2+1\) lattice QCD. Phys. Rev. D 82, 014507 (2010). https://doi.org/10.1103/PhysRevD.82.014507. arXiv:1004.5072 [hep-lat]

    Article  ADS  Google Scholar 

  13. G. P. Engel, C. B. Lang, M. Limmer, D. Mohler, A. Schafer (BGR [Bern-Graz-Regensburg]), Meson and baryon spectrum for QCD with two light dynamical quarks, Phys. Rev. D 82, 034505 (2010), https://doi.org/10.1103/PhysRevD.82.034505. arXiv:1005.1748 [hep-lat]

  14. R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011). https://doi.org/10.1103/PhysRevD.84.074508. arXiv:1104.5152 [hep-ph]

    Article  ADS  Google Scholar 

  15. B.J. Menadue, W. Kamleh, D.B. Leinweber, M.S. Mahbub, Isolating the \(\Lambda (1405)\) in Lattice QCD. Phys. Rev. Lett. 108, 112001 (2012). https://doi.org/10.1103/PhysRevLett.108.112001. arXiv:1109.6716 [hep-lat]

    Article  ADS  Google Scholar 

  16. R. G. Edwards, N. Mathur, D. G. Richards, S. J. Wallace (Hadron Spectrum), Flavor structure of the excited baryon spectra from lattice QCD, Phys. Rev. D 87, 054506 (2013). https://doi.org/10.1103/PhysRevD.87.054506. arXiv:1212.5236 [hep-ph]

  17. J. J. Dudek R. G. Edwards, Hybrid baryons in QCD, Phys. Rev. D 85, 054016 (2012), https://doi.org/10.1103/PhysRevD.85.054016. arXiv:1201.2349 [hep-ph]

  18. C. Alexandrou, J.W. Negele, M. Petschlies, A. Strelchenko, A. Tsapalis, Determination of \(\Delta \) resonance parameters from lattice QCD. Phys. Rev. D 88, 031501 (2013). https://doi.org/10.1103/PhysRevD.88.031501. arXiv:1305.6081 [hep-lat]

    Article  ADS  Google Scholar 

  19. C. Alexandrou, J.W. Negele, M. Petschlies, A.V. Pochinsky, S.N. Syritsyn, Study of decuplet baryon resonances from lattice QCD. Phys. Rev. D 93, 114515 (2016). https://doi.org/10.1103/PhysRevD.93.114515. arXiv:1507.02724 [hep-lat]

    Article  ADS  Google Scholar 

  20. F.M. Stokes, W. Kamleh, D.B. Leinweber, Elastic Form factors of nucleon excitations in lattice QCD. Phys. Rev. D 102, 014507 (2020). https://doi.org/10.1103/PhysRevD.102.014507. arXiv:1907.00177 [hep-lat]

    Article  ADS  Google Scholar 

  21. G. S. Bali, S. Collins, P. Georg, D. Jenkins, P. Korcyl, A. Schäfer, E. E. Scholz, J. Simeth, W. Söldner, S. Weishäupl (RQCD), Scale setting and the light baryon spectrum in N\(_{f} = 2 + 1\) QCD with Wilson fermions, JHEP 05, 035, https://doi.org/10.1007/JHEP05(2023)035. arXiv:2211.03744 [hep-lat]

  22. M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, A Three body force model for the baryon spectrum. Phys. Lett. B 364, 231 (1995). https://doi.org/10.1016/0370-2693(95)01091-2

    Article  ADS  Google Scholar 

  23. L. Y. Glozman D. O. Riska, The Spectrum of the nucleons and the strange hyperons and chiral dynamics. Phys. Rept. 268, 263 (1996), https://doi.org/10.1016/0370-1573(95)00062-3. arXiv:hep-ph/9505422

  24. U. Loring, B.C. Metsch, H.R. Petry, The Light baryon spectrum in a relativistic quark model with instanton induced quark forces: the Nonstrange baryon spectrum and ground states. Eur. Phys. J. A 10, 395 (2001). https://doi.org/10.1007/s100500170105. arXiv:hep-ph/0103289

    Article  ADS  Google Scholar 

  25. M.M. Giannini, E. Santopinto, A. Vassallo, Hypercentral constituent quark model and isospin dependence. Eur. Phys. J. A 12, 447 (2001). https://doi.org/10.1007/s10050-001-8668-y. arXiv:nucl-th/0111073

  26. E. Santopinto, An interacting quark-diquark model of baryons. Phys. Rev. C 72, 022201 (2005). https://doi.org/10.1103/PhysRevC.72.022201. arXiv:hep-ph/0412319

    Article  ADS  Google Scholar 

  27. R. Bijker, E. Santopinto, E. Santopinto, Unquenched quark model for baryons: Magnetic moments, spins and orbital angular momenta. Phys. Rev. C 80, 065210 (2009). https://doi.org/10.1103/PhysRevC.80.065210. arXiv:0912.4494 [nucl-th]

  28. L. Liu, C. Chen, Y. Lu, C.D. Roberts, J. Segovia, Composition of low-lying J=32\(\pm \)\(\Delta \)-baryons. Phys. Rev. D 105, 114047 (2022). https://doi.org/10.1103/PhysRevD.105.114047. arXiv:2203.12083 [hep-ph]

    Article  ADS  Google Scholar 

  29. M. Mai, U.-G. Meißner, C. Urbach, Towards a theory of hadron resonances. Phys. Rept. 1001, 1 (2023). https://doi.org/10.1016/j.physrep.2022.11.005. arXiv:2206.01477 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  30. U.-G. Meißner, The beauty of Spin. J. Phys. Conf. Ser. 295, 012001 (2011). https://doi.org/10.1088/1742-6596/295/1/012001. arXiv:1012.0924 [hep-ph]

    Article  Google Scholar 

  31. C.W. Andersen, J. Bulava, B. Hörz, C. Morningstar, Elastic \(I=3/2 p\)-wave nucleon-pion scattering amplitude and the \(\Delta \)(1232) resonance from N\(_f=2+1\) lattice QCD. Phys. Rev. D 97, 014506 (2018). https://doi.org/10.1103/PhysRevD.97.014506. arXiv:1710.01557 [hep-lat]

    Article  ADS  Google Scholar 

  32. G. Silvi et al., \(P\)-wave nucleon-pion scattering amplitude in the \(\Delta \)(1232) channel from lattice QCD. Phys. Rev. D 103, 094508 (2021). https://doi.org/10.1103/PhysRevD.103.094508. arXiv:2101.00689 [hep-lat]

    Article  ADS  Google Scholar 

  33. F. Pittler, C. Alexandrou, K. Hadjiannakou, G. Koutsou, S. Paul, M. Petschlies, A. Todaro, Elastic \(\pi \)\(-\) N scattering in the I = 3/2 channel. PoS LATTICE2021, 226 (2022), https://doi.org/10.22323/1.396.0226. arXiv:2112.04146 [hep-lat]

  34. J. Bulava, A.D. Hanlon, B. Hörz, C. Morningstar, A. Nicholson, F. Romero-López, S. Skinner, P. Vranas, A. Walker-Loud, Elastic nucleon-pion scattering at m\(\pi \) = 200 MeV from lattice QCD. Nucl. Phys. B 987, 116105 (2023). https://doi.org/10.1016/j.nuclphysb.2023.116105. arXiv:2208.03867 [hep-lat]

    Article  Google Scholar 

  35. S. Taylor et al., (CLAS), Radiative decays of the Sigma 0(1385) and Lambda(1520) hyperons. Phys. Rev. C 71, 054609 (2005). https://doi.org/10.1103/PhysRevC.71.054609. [Erratum: Phys. Rev. C 72, 039902 (2005)].arXiv:hep-ex/0503014

  36. L.S. Geng, E. Oset, M. Doring, The radiative decay of the Lambda(1405) and its two-pole structure. Eur. Phys. J. A 32, 201 (2007). https://doi.org/10.1140/epja/i2007-10371-0. arXiv:hep-ph/0702093

    Article  ADS  Google Scholar 

  37. M. Döring, Radiative decay of the Delta*(1700). Nucl. Phys. A 786, 164 (2007). https://doi.org/10.1016/j.nuclphysa.2007.02.004. arXiv:nucl-th/0701070

  38. M. Doring, E. Oset, S. Sarkar, Radiative decay of the Lambda(1520). Phys. Rev. C 74, 065204 (2006). https://doi.org/10.1103/PhysRevC.74.065204. arXiv:nucl-th/0601027

  39. V. I. Mokeev, D. S. Carman (CLAS), Photo- and electrocouplings of nucleon resonances. Few Body Syst. 63, 59 (2022), https://doi.org/10.1007/s00601-022-01760-2. arXiv:2202.04180 [nucl-ex]

  40. G. Ramalho, M. T. Peña, Electromagnetic transition form factors of baryon resonances (2023). arXiv:2306.13900 [hep-ph]

  41. C.E. Carlson, M. Vanderhaeghen, Empirical transverse charge densities in the nucleon and the nucleon-to-Delta transition. Phys. Rev. Lett. 100, 032004 (2008). https://doi.org/10.1103/PhysRevLett.100.032004. arXiv:0710.0835 [hep-ph]

    Article  ADS  Google Scholar 

  42. V. Bernard, N. Kaiser, U.-G. Meißner, On the low-energy theorems for threshold pion electroproduction. Phys. Lett. B 282, 448 (1992). https://doi.org/10.1016/0370-2693(92)90667-S

    Article  ADS  Google Scholar 

  43. V. Bernard, N. Kaiser, T.S.H. Lee, U.-G. Meißner, Chiral symmetry and threshold pi0 electroproduction. Phys. Rev. Lett. 70, 387 (1993). https://doi.org/10.1103/PhysRevLett.70.387

    Article  ADS  Google Scholar 

  44. V. Bernard, N. Kaiser, T.S.H. Lee, U.-G. Meißner, Threshold pion electroproduction in chiral perturbation theory. Phys. Rept. 246, 315 (1994). https://doi.org/10.1016/0370-1573(94)90088-4. arXiv:hep-ph/9310329

    Article  ADS  Google Scholar 

  45. V. Bernard, N. Kaiser, U.-G. Meißner, Novel pion electroproduction low-energy theorems. Phys. Rev. Lett. 74, 3752 (1995). https://doi.org/10.1103/PhysRevLett.74.3752. arXiv:hep-ph/9412282

    Article  ADS  Google Scholar 

  46. V. Bernard, N. Kaiser, U.-G. Meißner, Threshold neutral pion electroproduction in heavy baryon chiral perturbation theory. Nucl. Phys. A 607, 379 (1996). https://doi.org/10.1016/0375-9474(96)00184-4. [Erratum: Nucl. Phys. A 633, 695-697 (1998)].arXiv:hep-ph/9601267

  47. S. Steininger, U.-G. Meißner, Threshold kaon photoproduction and electroproduction in SU(3) baryon chiral perturbation theory. Phys. Lett. B 391, 446 (1997). https://doi.org/10.1016/S0370-2693(96)01490-6. arXiv:nucl-th/9609051

  48. V. Bernard, N. Kaiser, U.-G. Meißner, The Pion charge radius from charged pion electroproduction. Phys. Rev. C 62, 028201 (2000). https://doi.org/10.1103/PhysRevC.62.028201. arXiv:nucl-th/0003062

  49. H. Krebs, V. Bernard, U.-G. Meißner, Improved analysis of neutral pion electroproduction off deuterium in chiral perturbation theory. Eur. Phys. J. A 22, 503 (2004). https://doi.org/10.1140/epja/i2004-10052-6. arXiv:nucl-th/0405006

  50. D. Jido, M. Doering, E. Oset, Transition form factors of the N*(1535) as a dynamically generated resonance. Phys. Rev. C 77, 065207 (2008). https://doi.org/10.1103/PhysRevC.77.065207. arXiv:0712.0038 [nucl-th]

  51. M. Doring, D. Jido, E. Oset, Helicity amplitudes of the lambda(1670) and two lambda(1405) as dynamically generated resonances. Eur. Phys. J. A 45, 319 (2010). https://doi.org/10.1140/epja/i2010-11015-0. arXiv:1002.3688 [nucl-th]

  52. M. Mai, Review of the \({\Lambda }\)(1405) A curious case of a strangeness resonance. Eur. Phys. J. ST 230, 1593 (2021). https://doi.org/10.1140/epjs/s11734-021-00144-7. arXiv:2010.00056 [nucl-th]

  53. T.A. Gail, T.R. Hemmert, Signatures of chiral dynamics in the nucleon to delta transition. Eur. Phys. J. A 28, 91 (2006). https://doi.org/10.1140/epja/i2006-10023-y. arXiv:nucl-th/0512082

  54. T. Bauer, S. Scherer, L. Tiator, Electromagnetic transition form factors of the Roper resonance in effective field theory. Phys. Rev. C 90, 015201 (2014). https://doi.org/10.1103/PhysRevC.90.015201. arXiv:1402.0741 [nucl-th]

  55. D. Merten, U. Loring, K. Kretzschmar, B. Metsch, H.R. Petry, Electroweak form-factors of nonstrange baryons. Eur. Phys. J. A 14, 477 (2002). https://doi.org/10.1140/epja/i2002-10009-9. arXiv:hep-ph/0204024

    Article  ADS  Google Scholar 

  56. F. Gross, G. Ramalho, M.T. Pena, A Pure S-wave covariant model for the nucleon. Phys. Rev. C 77, 015202 (2008). https://doi.org/10.1103/PhysRevC.77.015202. arXiv:nucl-th/0606029

  57. G. Ramalho, M.T. Peña, A covariant model for the \(\gamma N \rightarrow N(1535)\) transition at high momentum transfer. Phys. Rev. D 84, 033007 (2011). https://doi.org/10.1103/PhysRevD.84.033007. arXiv:1105.2223 [hep-ph]

    Article  ADS  Google Scholar 

  58. E. Santopinto, M.M. Giannini, Systematic study of longitudinal and transverse helicity amplitudes in the hypercentral constituent quark model. Phys. Rev. C 86, 065202 (2012). https://doi.org/10.1103/PhysRevC.86.065202. arXiv:1506.01207 [nucl-th]

  59. B. Golli, S. Širca, A chiral quark model for meson electroproduction in the region of D-wave resonances. Eur. Phys. J. A 49, 111 (2013). https://doi.org/10.1140/epja/i2013-13111-y. arXiv:1306.3330 [nucl-th]

  60. I.G. Aznauryan, V. Burkert, Electroexcitation of nucleon resonances of the [70,1\(-\)] multiplet in a light-front relativistic quark model. Phys. Rev. C 95, 065207 (2017). https://doi.org/10.1103/PhysRevC.95.065207. arXiv:1703.01751 [nucl-th]

  61. I.T. Obukhovsky, A. Faessler, D.K. Fedorov, T. Gutsche, V.E. Lyubovitskij, Transition form factors and helicity amplitudes for electroexcitation of negative- and positive parity nucleon resonances in a light-front quark model. Phys. Rev. D 100, 094013 (2019). https://doi.org/10.1103/PhysRevD.100.094013. arXiv:1909.13787 [hep-ph]

    Article  ADS  Google Scholar 

  62. G. Ramalho, M.T. Peña, Covariant model for the Dalitz decay of the \(N(1535)\) resonance. Phys. Rev. D 101, 114008 (2020). https://doi.org/10.1103/PhysRevD.101.114008. arXiv:2003.04850 [hep-ph]

    Article  ADS  Google Scholar 

  63. B. Borasoy, P.C. Bruns, U.-G. Meißner, R. Nissler, A Gauge invariant chiral unitary framework for kaon photo- and electroproduction on the proton. Eur. Phys. J. A 34, 161 (2007). https://doi.org/10.1140/epja/i2007-10492-4. arXiv:0709.3181 [nucl-th]

  64. D. Ruić, M. Mai, U.-G. Meißner, \(\eta \)-Photoproduction in a gauge-invariant chiral unitary framework. Phys. Lett. B 704, 659 (2011). https://doi.org/10.1016/j.physletb.2011.09.090. arXiv:1108.4825 [nucl-th]

  65. M. Mai, P.C. Bruns, U.-G. Meißner, Pion photoproduction off the proton in a gauge-invariant chiral unitary framework. Phys. Rev. D 86, 094033 (2012). https://doi.org/10.1103/PhysRevD.86.094033. arXiv:1207.4923 [nucl-th]

  66. I.C. Cloet, G. Eichmann, B. El-Bennich, T. Klahn, C.D. Roberts, Survey of nucleon electromagnetic form factors. Few Body Syst. 46, 1 (2009). https://doi.org/10.1007/s00601-009-0015-x. arXiv:0812.0416 [nucl-th]

  67. D.J. Wilson, I.C. Cloet, L. Chang, C.D. Roberts, Nucleon and Roper electromagnetic elastic and transition form factors. Phys. Rev. C 85, 025205 (2012). https://doi.org/10.1103/PhysRevC.85.025205. arXiv:1112.2212 [nucl-th]

  68. J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloet, C.D. Roberts, S.-S. Xu, H.-S. Zong, Completing the picture of the Roper resonance. Phys. Rev. Lett. 115, 171801 (2015). https://doi.org/10.1103/PhysRevLett.115.171801. arXiv:1504.04386 [nucl-th]

  69. G. Eichmann, C.S. Fischer, H. Sanchis-Alepuz, Light baryons and their excitations. Phys. Rev. D 94, 094033 (2016). https://doi.org/10.1103/PhysRevD.94.094033. arXiv:1607.05748 [hep-ph]

    Article  ADS  Google Scholar 

  70. C. Chen, Y. Lu, D. Binosi, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, Nucleon-to-Roper electromagnetic transition form factors at large \(Q^2\). Phys. Rev. D 99, 034013 (2019). https://doi.org/10.1103/PhysRevD.99.034013. arXiv:1811.08440 [nucl-th]

  71. S.-X. Qin, C.D. Roberts, S.M. Schmidt, Spectrum of light- and heavy-baryons. Few Body Syst. 60, 26 (2019). https://doi.org/10.1007/s00601-019-1488-x. arXiv:1902.00026 [nucl-th]

  72. I.G. Aznauryan, V.D. Burkert, Electroexcitation of nucleon resonances. Prog. Part. Nucl. Phys. 67, 1 (2012). https://doi.org/10.1016/j.ppnp.2011.08.001. arXiv:1109.1720 [hep-ph]

    Article  ADS  Google Scholar 

  73. I.G. Aznauryan et al., Studies of nucleon resonance structure in exclusive meson electroproduction. Int. J. Mod. Phys. E 22, 1330015 (2013). https://doi.org/10.1142/S0218301313300154. arXiv:1212.4891 [nucl-th]

  74. A. Bashir, L. Chang, I.C. Cloet, B. El-Bennich, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Collective perspective on advances in Dyson–Schwinger equation QCD. Commun. Theor. Phys. 58, 79 (2012). https://doi.org/10.1088/0253-6102/58/1/16. arXiv:1201.3366 [nucl-th]

  75. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 91, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.07.001. arXiv:1606.09602 [hep-ph]

    Article  ADS  Google Scholar 

  76. G. Eichmann, Theory introduction to baryon spectroscopy. Few Body Syst. 63, 57 (2022). https://doi.org/10.1007/s00601-022-01756-y. arXiv:2202.13378 [hep-ph]

    Article  ADS  Google Scholar 

  77. A. Agadjanov, V. Bernard, U.G. Meißner, A. Rusetsky, A framework for the calculation of the \(\Delta N\gamma ^*\) transition form factors on the lattice. Nucl. Phys. B 886, 1199 (2014). https://doi.org/10.1016/j.nuclphysb.2014.07.023. arXiv:1405.3476 [hep-lat]

    Article  MathSciNet  ADS  Google Scholar 

  78. A. Radhakrishnan, J. J. Dudek, R. G. Edwards (Hadron Spectrum), Radiative decay of the resonant K* and the \(\gamma \)K\(\rightarrow \)K\(\pi \) amplitude from lattice QCD, Phys. Rev. D 106, 114513 (2022), https://doi.org/10.1103/PhysRevD.106.114513. arXiv:2208.13755 [hep-lat]

  79. L. Tiator, M. Döring, R.L. Workman, M. Hadžimehmedović, H. Osmanović, R. Omerović, J. Stahov, A. Švarc, Baryon transition form factors at the pole. Phys. Rev. C 94, 065204 (2016). https://doi.org/10.1103/PhysRevC.94.065204. arXiv:1606.00371 [nucl-th]

  80. L. Tiator, R.L. Workman, Y. Wunderlich, H. Haberzettl, Amplitude reconstruction from complete electroproduction experiments and truncated partial-wave expansions. Phys. Rev. C 96, 025210 (2017). https://doi.org/10.1103/PhysRevC.96.025210. arXiv:1702.08375 [nucl-th]

  81. Y. Wunderlich, New graphical criterion for the selection of complete sets of polarization observables and its application to single-meson photoproduction as well as electroproduction. Phys. Rev. C 104, 045203 (2021). https://doi.org/10.1103/PhysRevC.104.045203. arXiv:2106.00486 [nucl-th]

  82. M. Mai, M. Döring, C. Granados, H. Haberzettl, U.-G. Meißner, D. Rönchen, I. Strakovsky, R. Workman (Jülich–Bonn–Washington), Jülich–Bonn–Washington model for pion electroproduction multipoles, Phys. Rev. C 103, 065204 (2021), https://doi.org/10.1103/PhysRevC.103.065204. arXiv:2104.07312 [nucl-th]

  83. M. Mai, M. Döring, C. Granados, H. Haberzettl, J. Hergenrather, U.-G. Meißner, D. Rönchen, I. Strakovsky, R. Workman (Jülich-Bonn-Washington), Coupled-channels analysis of pion and \(\eta \) electroproduction within the Jülich–Bonn–Washington model, Phys. Rev. C 106, 015201 (2022), https://doi.org/10.1103/PhysRevC.106.015201. arXiv:2111.04774 [nucl-th]

  84. D. Rönchen, M. Döring, H. Haberzettl, J. Haidenbauer, U.-G. Meißner, K. Nakayama, Eta photoproduction in a combined analysis of pion- and photon-induced reactions. Eur. Phys. J. A 51, 70 (2015). https://doi.org/10.1140/epja/i2015-15070-7. arXiv:1504.01643 [nucl-th]

  85. D. Rönchen, M. Döring, U.-G. Meißner, The impact of \(K^{+}\Lambda \) photoproduction on the resonance spectrum. Eur. Phys. J. A 54, 110 (2018). https://doi.org/10.1140/epja/i2018-12541-3. arXiv:1801.10458 [nucl-th]

  86. D. Rönchen, M. Döring, U.-G. Meißner, C.-W. Shen, Light baryon resonances from a coupled-channel study including \( K\Sigma \) photoproduction. Eur. Phys. J. A 58, 229 (2022). https://doi.org/10.1140/epja/s10050-022-00852-1. arXiv:2208.00089 [nucl-th]

  87. Y.-F. Wang, D. Rönchen, U.-G. Meißner, Y. Lu, C.-W. Shen, J.-J. Wu, Reaction \(\pi \)N\(\rightarrow \)\(\omega \)N in a dynamical coupled-channel approach. Phys. Rev. D 106, 094031 (2022). https://doi.org/10.1103/PhysRevD.106.094031. arXiv:2208.03061 [nucl-th]

  88. M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, D. Rönchen, The reaction pi+ p -\({>}\) K+ Sigma+ in a unitary coupled-channels model. Nucl. Phys. A 851, 58 (2011). https://doi.org/10.1016/j.nuclphysa.2010.12.010. arXiv:1009.3781 [nucl-th]

  89. D. Ronchen, M. Doring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, K. Nakayama, Coupled-channel dynamics in the reactions piN -\({>}\) piN, etaN, KLambda, KSigma. Eur. Phys. J. A 49, 44 (2013). https://doi.org/10.1140/epja/i2013-13044-5. arXiv:1211.6998 [nucl-th]

  90. Jülich–Bonn web page with fit results for pion and photon-induced reactions, http://collaborations.fz-juelich.de/ikp/meson-baryon/juelich_amplitudes.html (2012)

  91. JBW Interactive Scattering Analysis website (under development), https://JBW.phys.gwu.edu (2021)

  92. L. Tiator, D. Drechsel, S. Kamalov, M.M. Giannini, E. Santopinto, A. Vassallo, Electroproduction of nucleon resonances. Eur. Phys. J. A 19, 55 (2004). https://doi.org/10.1140/epjad/s2004-03-009-9. arXiv:nucl-th/0310041

  93. M. Hilt, B.C. Lehnhart, S. Scherer, L. Tiator, Pion photo- and electroproduction in relativistic baryon chiral perturbation theory and the chiral MAID interface. Phys. Rev. C 88, 055207 (2013). https://doi.org/10.1103/PhysRevC.88.055207. arXiv:1309.3385 [nucl-th]

  94. W.-T. Chiang, S.-N. Yang, L. Tiator, D. Drechsel, An Isobar model for eta photoproduction and electroproduction on the nucleon. Nucl. Phys. A 700, 429 (2002). https://doi.org/10.1016/S0375-9474(01)01325-2. arXiv:nucl-th/0110034

  95. L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Electromagnetic Excitation of Nucleon Resonances. Eur. Phys. J. ST 198, 141 (2011). https://doi.org/10.1140/epjst/e2011-01488-9. arXiv:1109.6745 [nucl-th]

  96. I.G. Aznauryan et al., (CLAS), Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction. Phys. Rev. C 80, 055203 (2009). https://doi.org/10.1103/PhysRevC.80.055203. arXiv:0909.2349 [nucl-ex]

    Article  ADS  Google Scholar 

  97. V.D. Burkert, C.D. Roberts, Colloquium?: roper resonance: toward a solution to the fifty year puzzle. Rev. Mod. Phys. 91, 011003 (2019). https://doi.org/10.1103/RevModPhys.91.011003. arXiv:1710.02549 [nucl-ex]

    Article  MathSciNet  ADS  Google Scholar 

  98. V. D. Burkert, Nucleon resonances and transition form factors (2022). arXiv:2212.08980 [hep-ph]

  99. I.G. Aznauryan, Multipole amplitudes of pion photoproduction on nucleons up to 2-Gev within dispersion relations and unitary isobar model. Phys. Rev. C 67, 015209 (2003). https://doi.org/10.1103/PhysRevC.67.015209. arXiv:nucl-th/0206033

  100. I. G. Aznauryan et al. (CLAS), Electroexcitation of the Roper resonance for 1.7 \({<}\) Q**2 \({<}\) 4.5 -GeV2 in vec-ep —\({>}\) en pi+, Phys. Rev. C 78, 045209 (2008), https://doi.org/10.1103/PhysRevC.78.045209. arXiv:0804.0447 [nucl-ex]

  101. S.X. Nakamura, H. Kamano, T. Sato, Dynamical coupled-channels model for neutrino-induced meson productions in resonance region. Phys. Rev. D 92, 074024 (2015). https://doi.org/10.1103/PhysRevD.92.074024. arXiv:1506.03403 [hep-ph]

    Article  ADS  Google Scholar 

  102. G. Ramalho, Analytic parametrizations of the \(\gamma ^\ast N \rightarrow N(1440)\) form factors inspired by light-front holography. Phys. Rev. D 96, 054021 (2017). https://doi.org/10.1103/PhysRevD.96.054021. arXiv:1706.05707 [hep-ph]

    Article  ADS  Google Scholar 

  103. G. Ramalho, Combined parametrization of G\(_{En}\) and \(\gamma ^{\ast } N \rightarrow \Delta (1232)\) quadrupole form factors. Eur. Phys. J. A 55, 32 (2019). https://doi.org/10.1140/epja/i2019-12699-0. arXiv:1710.10527 [hep-ph]

    Article  ADS  Google Scholar 

  104. G. Ramalho, Low-\(Q^2\) empirical parametrizations of the \(N^\ast \) helicity amplitudes. Phys. Rev. D 100, 114014 (2019). https://doi.org/10.1103/PhysRevD.100.114014. arXiv:1909.00013 [hep-ph]

    Article  ADS  Google Scholar 

  105. V.I. Mokeev et al., (CLAS), Experimental Study of the \(P_{11}(1440)\) and \(D_{13}(1520)\) resonances from CLAS data on \(ep \rightarrow e^{\prime }\pi ^{+} \pi ^{-} p^{\prime }\). Phys. Rev. C 86, 035203 (2012). https://doi.org/10.1103/PhysRevC.86.035203. arXiv:1205.3948 [nucl-ex]

    Article  ADS  Google Scholar 

  106. V.I. Mokeev et al., New Results from the Studies of the \(N(1440)1/2^+\), \(N(1520)3/2^-\), and \(\Delta (1620)1/2^-\) Resonances in Exclusive \(ep \rightarrow e^{\prime }p^{\prime } \pi ^+ \pi ^-\) Electroproduction with the CLAS Detector. Phys. Rev. C 93, 025206 (2016). https://doi.org/10.1103/PhysRevC.93.025206. arXiv:1509.05460 [nucl-ex]

    Article  ADS  Google Scholar 

  107. V.I. Mokeev et al., Evidence for the \(N^{\prime }(1720)3/2^+\) nucleon resonance from combined studies of CLAS \(\pi ^+\pi ^-p\) photo- and electroproduction data. Phys. Lett. B 805, 135457 (2020). https://doi.org/10.1016/j.physletb.2020.135457. arXiv:2004.13531 [nucl-ex]

    Article  Google Scholar 

  108. V. I. Mokeev, P. Achenbach, V. D. Burkert, D. S. Carman, R. W. Gothe, A. N. Hiller Blin, E. L. Isupov, K. Joo, K. Neupane, A. Trivedi, First results on nucleon resonance electroexcitation amplitudes from \(ep\rightarrow e^{\prime }\pi ^+\pi ^-p^{\prime }\) cross sections at \(W\) from 1.4 to 1.7 GeV and \(Q^2\) from 2.0 to 5.0 GeV\(^2\), (2023), arXiv:2306.13777 [nucl-ex]

  109. V. Bernard, N. Kaiser, U.G. Meißner, A. Schmidt, Threshold two pion photoproduction and electroproduction: More neutrals than expected. Nucl. Phys. A 580, 475 (1994). https://doi.org/10.1016/0375-9474(94)90910-5. arXiv:nucl-th/9403013

  110. C. Bennhold, H. Haberzettl, T. Mart, A new resonance in K+ lambda electroproduction: the D(13)(1895) and its electromagnetic form-factors. In 2nd ICTP International Conference on Perspectives in Hadronic Physics, pp. 328–337 (1999). arXiv:nucl-th/9909022

  111. O.V. Maxwell, Electromagnetic production of kaons from protons, and baryon electromagnetic form factors. Phys. Rev. C 85, 034611 (2012). https://doi.org/10.1103/PhysRevC.85.034611

    Article  ADS  Google Scholar 

  112. T. Corthals, T. Van Cauteren, P. Van Craeyveld, J. Ryckebusch, D.G. Ireland, Electroproduction of kaons from the proton in a Regge-plus-resonance approach. Phys. Lett. B 656, 186 (2007). https://doi.org/10.1016/j.physletb.2007.09.036. arXiv:0704.3691 [nucl-th]

  113. L. De Cruz, J. Ryckebusch, T. Vrancx, P. Vancraeyveld, A Bayesian analysis of kaon photoproduction with the Regge-plus-resonance model. Phys. Rev. C 86, 015212 (2012). https://doi.org/10.1103/PhysRevC.86.015212. arXiv:1205.2195 [nucl-th]

  114. D.S. Carman, CLAS \(\vec{N^*}\) Excitation Results from Pion and Kaon Electroproduction. Few Body Syst. 59, 82 (2018). https://doi.org/10.1007/s00601-018-1405-8

    Article  ADS  Google Scholar 

  115. H. Haberzettl, C. Bennhold, T. Mart, T. Feuster, Gauge-invariant tree-level photoproduction amplitudes with form factors. Phys. Rev. C 58, R40 (1998). https://doi.org/10.1103/PhysRevC.58.R40. arXiv:nucl-th/9804051

  116. T. Mart, C. Bennhold, Evidence for a missing nucleon resonance in kaon photoproduction. Phys. Rev. C 61, 012201 (2000). https://doi.org/10.1103/PhysRevC.61.012201. arXiv:nucl-th/9906096

  117. T. Mart, A. Sulaksono, Kaon photoproduction in a multipole approach. Phys. Rev. C 74, 055203 (2006). https://doi.org/10.1103/PhysRevC.74.055203. arXiv:nucl-th/0609077

  118. T. Mart, Photo- and electroproduction of the \(K^0\Lambda \) near threshold and effects of the \(K^0\) electromagnetic form factor. Phys. Rev. C 83, 048203 (2011). https://doi.org/10.1103/PhysRevC.83.048203. arXiv:1104.2393 [nucl-th]

  119. J. Nys, V. Mathieu, C. Fernández-Ramírez, A. N. Hiller Blin, A. Jackura, M. Mikhasenko, A. Pilloni, A. P. Szczepaniak, G. Fox, J. Ryckebusch (JPAC), Finite-energy sum rules in eta photoproduction off a nucleon, Phys. Rev. D 95, 034014 (2017), https://doi.org/10.1103/PhysRevD.95.034014. arXiv:1611.04658 [hep-ph]

  120. A.N.H. Blin, W. Melnitchouk, V.I. Mokeev, V.D. Burkert, V.V. Chesnokov, A. Pilloni, A.P. Szczepaniak, Resonant contributions to inclusive nucleon structure functions from exclusive meson electroproduction data. Phys. Rev. C 104, 025201 (2021). https://doi.org/10.1103/PhysRevC.104.025201. arXiv:2105.05834 [hep-ph]

    Article  ADS  Google Scholar 

  121. H. Haberzettl, Gauge invariance of meson photo- and electroproduction currents revisited. Phys. Rev. D 104, 056001 (2021). https://doi.org/10.1103/PhysRevD.104.056001. arXiv:2105.11554 [hep-ph]

    Article  ADS  Google Scholar 

  122. D.S. Carman et al., (CLAS), Beam-recoil transferred polarization in K+Y electroproduction in the nucleon resonance region with CLAS12. Phys. Rev. C 105, 065201 (2022). https://doi.org/10.1103/PhysRevC.105.065201. arXiv:2202.03398 [nucl-ex]

    Article  ADS  Google Scholar 

  123. G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu, Relativistic dispersion relation approach to photomeson production. Phys. Rev. 106, 1345 (1957). https://doi.org/10.1103/PhysRev.106.1345

    Article  MathSciNet  ADS  Google Scholar 

  124. P. Dennery, Theory of the Electro- and photoproduction of pi mesons. Phys. Rev. 124, 2000 (1961). https://doi.org/10.1103/PhysRev.124.2000

    Article  MathSciNet  ADS  Google Scholar 

  125. F. A. Berends, A. Donnachie, D. L. Weaver, Photoproduction and electroproduction of pions. 1. Dispersion relation theory. Nucl. Phys. B 4, 1 (1967) https://doi.org/10.1016/0550-3213(67)90196-4

  126. C. Ciofi D. Atti, Electron scattering by nuclei. Prog. Part. Nucl. Phys. 3, 163 (1978) https://doi.org/10.1016/0146-6410(80)90032-0

  127. M. Doring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Analytic properties of the scattering amplitude and resonances parameters in a meson exchange model. Nucl. Phys. A 829, 170 (2009). https://doi.org/10.1016/j.nuclphysa.2009.08.010. arXiv:0903.4337 [nucl-th]

  128. M. Doring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, The Role of the background in the extraction of resonance contributions from meson-baryon scattering. Phys. Lett. B 681, 26 (2009). https://doi.org/10.1016/j.physletb.2009.09.052. arXiv:0903.1781 [nucl-th]

  129. A.J.F. Siegert, Note on the interaction between nuclei and electromagnetic radiation. Phys. Rev. 52, 787 (1937). https://doi.org/10.1103/PhysRev.52.787

    Article  ADS  Google Scholar 

  130. L. Tiator, Pion Electroproduction and Siegert’s Theorem. Few Body Syst. 57, 1087 (2016). https://doi.org/10.1007/s00601-016-1158-1

    Article  ADS  Google Scholar 

  131. C. Mertz et al., Search for quadrupole strength in the electroexcitation of the \(\Delta (1232)\). Phys. Rev. Lett. 86, 2963 (2001). https://doi.org/10.1103/PhysRevLett.86.2963. arXiv:nucl-ex/9902012

    Article  ADS  Google Scholar 

  132. D. Elsner et al., Measurement of the LT-asymmetry in pi0 electroproduction at the energy of the Delta(1232) resonance. Eur. Phys. J. A 27, 91 (2006). https://doi.org/10.1140/epja/i2005-10212-2. arXiv:nucl-ex/0507014

    Article  ADS  Google Scholar 

  133. K. Joo et al., (CLAS), Measurement of the polarized structure function sigma(LT-prime) for p(polarized-p, e-prime p) pi0 in the Delta(1232) resonance region. Phys. Rev. C 68, 032201 (2003). https://doi.org/10.1103/PhysRevC.68.032201. arXiv:nucl-ex/0301012

    Article  ADS  Google Scholar 

  134. N. F. Sparveris et al. (OOPS), Measurement of the R(LT) response function for pi0 electroproduction at Q**2 = 0.070 (GeV/c)**2 in the N —\({>}\) Delta transition, Phys. Rev. C 67, 058201 (2003). https://doi.org/10.1103/PhysRevC.67.058201. arXiv:nucl-ex/0212022

  135. J.J. Kelly et al., (Jefferson Lab Hall A), Recoil polarization for delta excitation in pion electroproduction. Phys. Rev. Lett. 95, 102001 (2005). https://doi.org/10.1103/PhysRevLett.95.102001. arXiv:nucl-ex/0505024

    Article  ADS  Google Scholar 

  136. P. Bartsch et al., Measurement of the beam helicity asymmetry in the p(polarized-e, e-prime p) pi0 reaction at the energy of the Delta(1232) resonance. Phys. Rev. Lett. 88, 142001 (2002). https://doi.org/10.1103/PhysRevLett.88.142001. arXiv:nucl-ex/0112009

    Article  ADS  Google Scholar 

  137. I. K. Bensafa, et al. (MAMI-A1), Beam-helicity asymmetry in photon and pion electroproduction in the \(\Delta (1232)\) resonance region at \(Q^2 = 0.35 (\text{GeV/c})^2\), Eur. Phys. J. A 32, 69 (2007). https://doi.org/10.1140/epja/i2006-10277-3. arXiv:hep-ph/0612248

  138. K. Joo et al., (CLAS), Measurement of the polarized structure function sigma(LT-prime) for p(polarized-e, e-prime pi+)n in the Delta(1232) resonance region. Phys. Rev. C 70, 042201 (2004). https://doi.org/10.1103/PhysRevC.70.042201. arXiv:nucl-ex/0407013

    Article  ADS  Google Scholar 

  139. K. Park, private communication (2007)

  140. D. Gaskell et al., Longitudinal electroproduction of charged pions from H-1, H-2, He-3. Phys. Rev. Lett. 87, 202301 (2001). https://doi.org/10.1103/PhysRevLett.87.202301

    Article  ADS  Google Scholar 

  141. G. Laveissiere, et al. (JLab Hall A), Backward electroproduction of pi0 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0-GeV**2, Phys. Rev. C 69, 045203 (2004). https://doi.org/10.1103/PhysRevC.69.045203. arXiv:nucl-ex/0308009

  142. M. Ungaro et al., (CLAS), Measurement of the \(N \rightarrow \Delta ^+(1232)\) transition at high momentum transfer by \(\pi ^0\) electroproduction. Phys. Rev. Lett. 97, 112003 (2006). https://doi.org/10.1103/PhysRevLett.97.112003. arXiv:hep-ex/0606042

    Article  ADS  Google Scholar 

  143. J. Gayler, Electroproduction of \(\pi ^0\) mesons in the region of \(\Delta (1232)\) with momentum transfer \(q^2 = 15\) fm\(^{-2}\), Tech. Rep. DESY-F21-71-2 (DESY 1971)

  144. J. May, Koinzidenzmessungen zur Untersuchung der Reaktion \(ep \rightarrow ep\pi ^0\) beim Impulsübertrag \(q^{2} \approx 1 GeV^{2}\) im Massenbereich zwischen 1.136 und 1.316 GeV, Ph.D. thesis, Hamburg U (1971)

  145. V.V. Frolov et al., Electroproduction of the Delta (1232) resonance at high momentum transfer. Phys. Rev. Lett. 82, 45 (1999). https://doi.org/10.1103/PhysRevLett.82.45. arXiv:hep-ex/9808024

    Article  ADS  Google Scholar 

  146. C. T. Hill, Higgs Scalars and the Nonleptonic Weak Interactions, Other thesis, Caltech (1977)

  147. K. Joo et al., (CLAS), \(Q^2\) dependence of quadrupole strength in the \(\gamma ^* p \rightarrow \Delta ^+(1232)\rightarrow p \pi ^0\) transition. Phys. Rev. Lett. 88, 122001 (2002). https://doi.org/10.1103/PhysRevLett.88.122001. arXiv:hep-ex/0110007

    Article  ADS  Google Scholar 

  148. R. Siddle et al., Coincidence \(\pi ^0\) electroproduction experiments in the first resonance region at momentum transfers of 0.3, 0.45, 0.60, 0.76 GeV/c\(^2\), Nucl. Phys. B 35, 93 (1971) https://doi.org/10.1016/0550-3213(71)90134-9

  149. R. Haidan, Elektroproduktion pseudoskalarer Mesonen im Resonanzgebiet bei großen Impulsüberträgen, Ph.D. thesis, Hamburg U. (1979) https://doi.org/10.3204/PUBDB-2017-12089

  150. F. Kalleicher, U. Dittmayer, R.W. Gothe, H. Putsch, T. Reichelt, B. Schoch, M. Wilhelm, The determination of sigma(LT)/sigma(TT) in electropion production in the Delta resonance region. Z. Phys. A 359, 201 (1997). https://doi.org/10.1007/s002180050387

    Article  ADS  Google Scholar 

  151. K. Baetzner, et al., \(\pi ^0\) electroproduction at the \(\Delta (1236)\) resonance at a four-momentum transfer of \(Q^2 = 0.3~(\text{ Gev/c})^2\), Nucl. Phys. B 76, 1 (1974) https://doi.org/10.1016/0550-3213(74)90133-3

  152. A. Latham et al., Coincidence electroproduction of single neutral pions in the resonance region at q 2 = 0.5 (GeV/ c ) 2, Nucl. Phys. B 156, 58 (1979) https://doi.org/10.1016/0550-3213(79)90494-2

  153. A. Latham et al., Electroproduction of \(\pi ^0\) Mesons in the Resonance Region at \(q^2=1.0\)-GeV/\(c^2\), Nucl. Phys. B 189, 1 (1981) https://doi.org/10.1016/0550-3213(81)90078-X

  154. S. C. Stave, Lowest \(Q^{2}\) measurement of the \(\gamma ^* p\rightarrow \Delta \) reaction: probing the pionic contribution. Ph.D. thesis, MIT (2006) https://doi.org/10.2172/922278

  155. N. F. Sparveris et al., Determination of quadrupole strengths in the \(\gamma ^* p \rightarrow \Delta (1232)\) transition at \(Q^2 = 0.20~(\text{ GeV/c})^2\), Phys. Lett. B 651, 102 (2007). https://doi.org/10.1016/j.physletb.2007.04.056. arXiv:nucl-ex/0611033

  156. J.C. Alder, F.W. Brasse, W. Fehrenbach, J. Gayler, S.P. Goel, R. Haidan, V. Korbel, J. May, M. Merkwitz, A. Nurimba, Electroproduction of neutral pions in the resonance region. Nucl. Phys. B 105, 253 (1976). https://doi.org/10.1016/0550-3213(76)90266-2

    Article  ADS  Google Scholar 

  157. N.G. Afanasev, A.S. Esaulov, A.M. Pilipenko, Y.I. Titov, Separation of transversal and longitudinal components of cross-section of pion electroproduction on proton near the threshold. Pisma Zh. Eksp. Teor. Fiz. 22, 400 (1975)

    Google Scholar 

  158. W.J. Shuttleworth et al., Coincidence \(\pi ^0\) electroproduction in the second resonance region. Nucl. Phys. B 45, 428 (1972). https://doi.org/10.1016/0550-3213(72)90251-9

    Article  ADS  Google Scholar 

  159. H. Blume, R. Farber, N. Feldmann, K. Heinloth, D. Kramarczyk, F. Kuckelkorn, H. J. Michels, J. Pasler, J. P. Dowd, Electroproduction of \(\pi ^0\) mesons on protons at \(W = 1400~\text{ MeV }\) to \(2000~\text{ MeV }\), \(Q^2 = 0.01~\text{ GeV}^2\) to \(0.1~\text{ GeV}^2\), and \(t = 0.6~\text{ GeV}^2\) to \(2.2~\text{ GeV}^2\) corresponding to \(\theta _\text{ cm } = 145^\circ \) to \(180^\circ \), Z. Phys. C 16, 283 (1983). https://doi.org/10.1007/BF01577095

  160. M. Rosenberg, Electroproduction of neutral \(\pi \) mesons in the range of the two nucleon resonance at 0.3 GeV\(^2\)/c\(^2\) momentum transfer, Thesis, Bonn (1979)

  161. V. Gerhardt, Pion-Elektroproduktion im Bereich der 2. und 3. Nukleonresonanz, Ph.D. thesis, Hamburg U. (1979)

  162. MONTANA, “Pion electroproduction pi0p”, Ph.D. thesis, Harvard (1971)

  163. H. Egiyan et al. (CLAS), Single \(\pi ^+\) electroproduction on the proton in the first and second resonance regions at \(0.25~\text{ GeV}^2 {<}Q^2{<} 0.65~\text{ GeV}^2\) using CLAS, Phys. Rev. C 73, 025204 (2006). https://doi.org/10.1103/PhysRevC.73.025204. arXiv:nucl-ex/0601007

  164. H. Breuker et al., Forward \(\pi ^+\) Electroproduction in the First resonance region at four momentum transfers \(Q^2= 0.15\,(\text{ GeV/c})^2\) and \(0.3~(\text{ GeV/c})^2\), Nucl. Phys. B 146, 285 (1978). https://doi.org/10.1016/0550-3213(78)90069-X

  165. G. Bardin, J. Duclos, J. Julien, A. Magnon, B. Michel, J.C. Montret, A measurement of the longitudinal and transverse parts of the \(\pi ^{+}\) electroproduction cross-section at 1175 MeV pion-nucleon centre-of-mass energy. Lett. Nuovo Cim. 13, 485 (1975)

    Article  Google Scholar 

  166. G. Bardin, J. Duclos, A. Magnon, B. Michel, J.C. Montret, A transverse and longitudinal cross-section separation in a pi+ electroproduction coincidence experiment and the pion radius. Nucl. Phys. B 120, 45 (1977). https://doi.org/10.1016/0550-3213(77)90094-3

    Article  ADS  Google Scholar 

  167. M. Davenport, Electroproduction of neutral and positive pions between the first and second resonance regions., Ph.D. thesis, Lancaster (1980)

  168. O. Vapenikova et al., Electroproduction of single charged pions from deuterium at \(Q^2\approx 1~\text{ GeV}^2\) in the resonance region. Z. Phys. C 37, 251 (1988). https://doi.org/10.1007/BF01579910

    Article  Google Scholar 

  169. J.C. Alder, H. Behrens, F.W. Brasse, W. Fehrenbach, J. Gayler, S.P. Goel, R. Haidan, V. Korbel, J. May, M. Merkwitz, Electroproduction of pi+ mesons in the resonance region. Nucl. Phys. B 99, 1 (1975). https://doi.org/10.1016/0550-3213(75)90052-8

    Article  ADS  Google Scholar 

  170. E. Evangelides et al., Electroproduction of \(\pi ^+\) mesons in the second and third resonance regions. Nucl. Phys. B 71, 381 (1974). https://doi.org/10.1016/0550-3213(74)90189-8

    Article  ADS  Google Scholar 

  171. H. Breuker et al., Electroproduction of \(\pi ^+\) Mesons at forward and backward direction in the region of the \(D^-\)13 (1520) and \(^{15}\)F (1688) resonances. Z. Phys. C 13, 113 (1982). https://doi.org/10.1007/BF01547674

    Article  ADS  Google Scholar 

  172. H. Breuker et al., Backward electroproduction of \(\pi ^+\) mesons in the second and third nucleon resonance region. Z. Phys. C 17, 121 (1983). https://doi.org/10.1007/BF01574177

    Article  ADS  Google Scholar 

  173. C.J. Bebek, C.N. Brown, M. Herzlinger, S.D. Holmes, C.A. Lichtenstein, F.M. Pipkin, S. Raither, L.K. Sisterson, Measurement of the pion form-factor up to \(q^2\) = 4-GeV\(^2\). Phys. Rev. D 13, 25 (1976). https://doi.org/10.1103/PhysRevD.13.25

    Article  ADS  Google Scholar 

  174. C.N. Brown, C.R. Canizares, W.E. Cooper, A.M. Eisner, G.J. Feldmann, C.A. Lichtenstein, L. Litt, W. Loceretz, V.B. Montana, F.M. Pipkin, Coincidence electroproduction of charged pions and the pion form-factor. Phys. Rev. D 8, 92 (1973). https://doi.org/10.1103/PhysRevD.8.92

    Article  ADS  Google Scholar 

  175. L. Litt, \(\pi ^+\) Electroproduction along the virtual photon at fixed \(k^2\), Phd thesis, Harvard University (1971)

  176. C.S. Armstrong et al., (Jefferson Lab E94014), Electroproduction of the S(11)(1535) resonance at high momentum transfer. Phys. Rev. D 60, 052004 (1999). https://doi.org/10.1103/PhysRevD.60.052004. arXiv:nucl-ex/9811001

    Article  ADS  Google Scholar 

  177. H. Denizli et al., (CLAS), Q*2 dependence of the S(11)(1535) photocoupling and evidence for a P-wave resonance in eta electroproduction. Phys. Rev. C 76, 015204 (2007). https://doi.org/10.1103/PhysRevC.76.015204. arXiv:0704.2546 [nucl-ex]

    Article  ADS  Google Scholar 

  178. R. Thompson et al., (CLAS), The e p \(\rightarrow \) e-prime p eta reaction at and above the S(11)(1535) baryon resonance. Phys. Rev. Lett. 86, 1702 (2001). https://doi.org/10.1103/PhysRevLett.86.1702. arXiv:hep-ex/0011029

    Article  ADS  Google Scholar 

  179. M.M. Dalton et al., Electroproduction of eta mesons in the S(11)(1535) resonance region at high momentum transfer. Phys. Rev. C 80, 015205 (2009). https://doi.org/10.1103/PhysRevC.80.015205. arXiv:0804.3509 [hep-ex]

    Article  ADS  Google Scholar 

  180. D. S. Carman, K. Park, B. A. Raue, V. Crede (CLAS), Separated structure functions for exclusive \(K^+\Lambda \) and \(K^+\Sigma ^0\) electroproduction at 5.5 GeV with CLAS, Phys. Rev. C 87, 025204 (2013). https://doi.org/10.1103/PhysRevC.87.025204. arXiv:1212.1336 [nucl-ex]

  181. P. Ambrozewicz et al., (CLAS), Separated structure functions for the exclusive electroproduction of K+ Lambda and K+ Sigma0 final states. Phys. Rev. C 75, 045203 (2007). https://doi.org/10.1103/PhysRevC.75.045203. arXiv:hep-ex/0611036

    Article  ADS  Google Scholar 

  182. C. Kunz et al., (MIT-Bates OOPS), Measurement of the transverse longitudinal cross-sections in the \(p (\vec{e}, e^{\prime } p) \pi ^0\) reaction in the \(\Delta \) region. Phys. Lett. B 564, 21 (2003). https://doi.org/10.1016/S0370-2693(03)00675-0. arXiv:nucl-ex/0302018

    Article  ADS  Google Scholar 

  183. S. Stave et al., Lowest \(Q^2\) Measurement of the \(\gamma ^* p \rightarrow \Delta \) reaction: probing the pionic contribution. Eur. Phys. J. A 30, 471 (2006). https://doi.org/10.1140/epja/i2006-10162-1. arXiv:nucl-ex/0604013

    Article  ADS  Google Scholar 

  184. N.F. Sparveris et al., (OOPS), Investigation of the conjectured nucleon deformation at low momentum transfer. Phys. Rev. Lett. 94, 022003 (2005). https://doi.org/10.1103/PhysRevLett.94.022003. arXiv:nucl-ex/0408003

    Article  ADS  Google Scholar 

  185. R. Nasseripour et al., (CLAS), Polarized structure function \(\sigma _{LT^{\prime }}\) for \(p(\vec{e}, e^{\prime } K^+)\Lambda \) in the nucleon resonance region. Phys. Rev. C 77, 065208 (2008). https://doi.org/10.1103/PhysRevC.77.065208. arXiv:0801.4711 [nucl-ex]

    Article  ADS  Google Scholar 

  186. G. A. Warren et al. (M.I.T.-Bates OOPS, FPP), Induced proton polarization for \(\pi ^0\) electroproduction at \(Q^2 = 0.126~\text{ GeV}^2/c^2\) around the Delta (1232) resonance, Phys. Rev. C 58, 3722 (1998). https://doi.org/10.1103/PhysRevC.58.3722. arXiv:nucl-ex/9901004

  187. T. Pospischil et al., Measurement of the recoil polarization in the p (polarized e, e-prime polarized p) pi0 reaction at the Delta(1232) resonance. Phys. Rev. Lett. 86, 2959 (2001). https://doi.org/10.1103/PhysRevLett.86.2959. arXiv:nucl-ex/0010020

    Article  ADS  Google Scholar 

  188. J. Blatt, V. Weisskopf, Theoretical Nuclear Physics (John Wiley & Sons, New York, 1952)

    Google Scholar 

  189. D.M. Manley, R.A. Arndt, Y. Goradia, V.L. Teplitz, An isobar model partial wave analysis of \(\pi N \rightarrow \pi \pi N\) in the center-of-mass energy range 1320-MeV. Phys. Rev. D 30, 904 (1984). https://doi.org/10.1103/PhysRevD.30.904

    Article  ADS  Google Scholar 

  190. M.E. McCracken et al., (CLAS), Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab. Phys. Rev. C 81, 025201 (2010). https://doi.org/10.1103/PhysRevC.81.025201. arXiv:0912.4274 [nucl-ex]

    Article  ADS  Google Scholar 

  191. T.C. Jude et al., (Crystal Ball at MAMI), \(K^+\Lambda \) and \(K^+\Sigma ^0\) photoproduction with fine center-of-mass energy resolution. Phys. Lett. B 735, 112 (2014). https://doi.org/10.1016/j.physletb.2014.06.015. arXiv:1308.5659 [nucl-ex]

    Article  ADS  Google Scholar 

  192. V.V. Chesnokov, A.A. Golubenko, B.S. Ishkhanov, V.I. Mokeev, CLAS database for studies of the structure of hadrons in electromagnetic processes. Phys. Part. Nucl. 53, 184 (2022). https://doi.org/10.1134/S1063779622020241

    Article  Google Scholar 

  193. CLAS results data base. https://clasweb.jlab.org/physicsdb/

  194. “Pegasus” cluster at the GW High-Performance Computing faclity. https://hpc.gwu.edu/pegasus/

  195. J. Müller et al., (CBELSA/TAPS), New data on \(\vec{\gamma } \vec{p}\rightarrow \eta p\) with polarized photons and protons and their implications for \(N^* \rightarrow N\eta \) decays. Phys. Lett. B 803, 135323 (2020). https://doi.org/10.1016/j.physletb.2020.135323. arXiv:1909.08464 [nucl-ex]

    Article  Google Scholar 

  196. F.X. Lee, T. Mart, C. Bennhold, L.E. Wright, Quasifree kaon photoproduction on nuclei. Nucl. Phys. A 695, 237 (2001). https://doi.org/10.1016/S0375-9474(01)01098-3. arXiv:nucl-th/9907119

  197. J.-X. Lu, L.-S. Geng, M. Doering, M. Mai, Cross-channel constraints on resonant Antikaon-Nucleon scattering. Phys. Rev. Lett. 130, 071902 (2023). https://doi.org/10.1103/PhysRevLett.130.071902. arXiv:2209.02471 [hep-ph]

    Article  ADS  Google Scholar 

  198. A.V. Anisovich et al., The impact of new polarization data from Bonn, Mainz and Jefferson Laboratory on \(\gamma p \rightarrow \pi N\) multipoles. Eur. Phys. J. A 52, 284 (2016). https://doi.org/10.1140/epja/i2016-16284-9. arXiv:1604.05704 [nucl-th]

  199. W.J. Briscoe, M. Döring, H. Haberzettl, D.M. Manley, M. Naruki, I.I. Strakovsky, E.S. Swanson, Physics opportunities with meson beams. Eur. Phys. J. A 51, 129 (2015). https://doi.org/10.1140/epja/i2015-15129-5. arXiv:1503.07763 [hep-ph]

    Article  ADS  Google Scholar 

  200. W. J. Briscoe, M. Döring, H. Haberzettl, D. M. Manley, M. Naruki, G. Smith, I. Strakovsky, E. S. Swanson, Physics Opportunities with Meson Beams for EIC (2021), arXiv:2108.07591 [nucl-ex]

  201. D.S. Carman et al., (CLAS), First measurement of transferred polarization in the exclusive \(\vec{e} p\rightarrow e^{\prime }K^+\Lambda \) reaction. Phys. Rev. Lett. 90, 131804 (2003). https://doi.org/10.1103/PhysRevLett.90.131804. arXiv:hep-ex/0212014

    Article  ADS  Google Scholar 

  202. D. S. Carman et al. (CLAS), Beam-Recoil Polarization Transfer in the Nucleon Resonance Region in the Exclusive vec-ep \(\rightarrow \) e-prime K+ vec-Lambda and vec-ep \(\rightarrow \) e-prime K+ vec-Sigma0 Reactions at CLAS, Phys. Rev. C 79, 065205 (2009). arXiv:0904.3246 [hep-ex]

  203. R.K. Bradford et al., (CLAS), First measurement of beam-recoil observables C(x) and C(z) in hyperon photoproduction. Phys. Rev. C 75, 035205 (2007). https://doi.org/10.1103/PhysRevC.75.035205. arXiv:nucl-ex/0611034

    Article  ADS  Google Scholar 

  204. B.A. Raue, D.S. Carman, Ratio of sigma(L)/sigma(T) for p(e, e-prime K+) Lambda extracted from polarization transfer. Phys. Rev. C 71, 065209 (2005). https://doi.org/10.1103/PhysRevC.71.065209. arXiv:nucl-ex/0402024

    Article  ADS  Google Scholar 

  205. R.M. Mohring et al., (E93018), Separation of the longitudinal and transverse cross-sections in the \(p(e, e^{\prime } K^+) \Lambda \) and \(p(e, e^{\prime } K^+) \Sigma ^0\) reactions. Phys. Rev. C 67, 055205 (2003). https://doi.org/10.1103/PhysRevC.67.055205. arXiv:nucl-ex/0211005

    Article  ADS  Google Scholar 

  206. G. Niculescu et al., Longitudinal and transverse cross-sections in the H-1(e, e’ K+)Lambda reaction. Phys. Rev. Lett. 81, 1805 (1998). https://doi.org/10.1103/PhysRevLett.81.1805

    Article  ADS  Google Scholar 

  207. C.J. Bebek, A. Browman, C.N. Brown, K.M. Hanson, R.V. Kline, D. Larson, F.M. Pipkin, S.W. Raither, A. Silverman, L.K. Sisterson, Scalar-transverse separation of electroproduced K+ Lambda and K+ Sigma0 final states. Phys. Rev. D 15, 3082 (1977). https://doi.org/10.1103/PhysRevD.15.3082

    Article  ADS  Google Scholar 

  208. D. Carman, private communication (2023)

  209. Jülich Supercomputing Centre, JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing Architecture at Jülich Supercomputing Centre, J. Large-scale Res. Facilit. 7 (2021). https://doi.org/10.17815/jlsrf-7-182

Download references

Acknowledgements

The authors thank Daniel Carman, Viktor Mokeev, and Igor Strakovsky for making data available as well as for inspiring discussions, and DC and VM for a careful reading of the manuscript. The work of MM, UGM and DR was supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the funds provided to the Sino-German Collaborative Research Center TRR110 “Symmetries and the Emergence of Structure in QCD” (DFG Project ID 196253076 - TRR 110). The work of UGM was further supported by the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) (Grant No. 2018DM0034) and by Volkswagen Stiftung (Grant No. 93562). The work of TM was supported by the PUTI Q2 Grant from University of Indonesia under contract No. NKB-663/UN2.RST/HKP.05.00/2022. The work of MD and RW was supported in part by the U.S. Department of Energy grant DE-SC0016582; MD’s work was also supported in part by DOE Office of Science, Office of Nuclear Physics under contract DE-AC05- 06OR23177. The authors gratefully acknowledge computing time on the supercomputer JURECA [209] at Forschungszentrum Jülich under grant no. “baryonspectro” that was used to produce the input at \(Q^2=0\).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Mai.

Additional information

Communicated by Laura Tolos.

Appendix A: Multipoles at fixed W

Appendix A: Multipoles at fixed W

Fig. 13
figure 13

Multipoles for the \(\pi N(I=1/2)\) final state obtained through JBW coupled-channel solutions (connected by the shading to guide the eye)including experimental data in \(\pi N, \eta N, K\Lambda \) channels. Total energy is fixed to \(W=1.535~\textrm{GeV}\). Results at other kinematics can be obtained from the JBW web page https://jbw.phys.gwu.edu

Fig. 14
figure 14

Multipoles for the \(\eta N (I=1/2)\) final state obtained through JBW coupled-channel solutions (connected by the shading to guide the eye) including experimental data in \(\pi N, \eta N, K\Lambda \) channels. Total energy is fixed to \(W=1.535~\textrm{GeV}\). Results at other kinematics can be obtained from the JBW web page https://jbw.phys.gwu.edu

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, M., Hergenrather, J., Döring, M. et al. Inclusion of \(K\Lambda \) electroproduction data in a coupled channel analysis. Eur. Phys. J. A 59, 286 (2023). https://doi.org/10.1140/epja/s10050-023-01188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01188-0

Navigation