Skip to main content
Log in

The effect of spin dilution on magnetism of the linear chain system β-Cu2−x Zn x V2O7

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We have measured the magnetic susceptibility (χ) and heat capacity (C p) of β-Cu2−x Zn x V2O7 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.3, 2) in the temperature range 2–300 K. A one-dimensional alternating exchange Heisenberg antiferromagnetism (HAF) is observed in all compositions with chains of infinite length. The intra-chain exchange remains uniform and decreases marginally with dilution of the magnetic state. A cooperative ordering is seen in the magnetic chains for all Zn concentrations (x ≤ 0.3). The temperature of occurrence of this transition decreases with increasing Zn concentration. Though the conventional spin-wave theory has been used here to describe the properties of the ordered phase, the presence of some contributions like the lattice heat capacity in C p and the Curie-Weiss term in susceptibility introduces some uncertainties in the estimation of the proportions contributed by the spin system. Therefore, the nature of the ordered phase could not be ascertained unambiguously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Hase, I Terasaki and K Uchinokura, Phys. Rev. Lett. 70, 3651 (1993)

    Article  ADS  Google Scholar 

  2. J Darreit and L P Regnault, Solid State Commun. 86, 409 (1993)

    Article  ADS  Google Scholar 

  3. M Azuma, Z Hiroi, M Takano, K Ishida and Y Kitaoka, Phys. Rev. Lett. 73, 3463 (1994)

    Article  ADS  Google Scholar 

  4. F D M Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  5. M Steiner, J Villain and C G Windsor, Adv. Phys. 25, 87 (1976)

    Article  ADS  Google Scholar 

  6. S N Bhatia, C J O’Conner, R L Carlin, H A Algra and L J De Jongh, Chem. Phys. Lett. 50, 353 (1977)

    Article  ADS  Google Scholar 

  7. M Baenitz, C Geibel, M Dischner, G Sparn and F Steglich, Phys. Rev. B62, 12201 (2000)

    ADS  Google Scholar 

  8. N Motoyama, H Eisaki and S Uchida, Phys. Rev. Lett. 76, 3212 (1996)

    Article  ADS  Google Scholar 

  9. He Zhangzhen, Tôru Kyômen and Mitsuru Itoh, Phys. Rev. B69, 220407 (R) (2004)

    Google Scholar 

  10. E E Kaul, H Rosner, V Yashankhai, J Sichelschmidt, R V Shpanchenko and C Geibel, Phys. Rev. B67, 174417 (2003)

    ADS  Google Scholar 

  11. M Isobe and Y Ueda, J. Phys. Soc. Jpn 65, 1178 (1996)

    Article  ADS  Google Scholar 

  12. M Touaiher, K Rissouli, K Benkhouja, M Taibi, J Aride, A Boukhari and B Heulin, Mater. Chem. Phys. 85, 41 (2004)

    Article  Google Scholar 

  13. L A Ponomarenko, A N Vasil’ev, E V Antipov and Yu A Velikodny, Physica B284–288, 1459 (2000)

    Google Scholar 

  14. J Pommar, V Kataev, K-Y Choi, P Lemmens, A Ionescu, Yu Pashkevich, A Freimuth and G Güntherodt, Phys. Rev. B67, 214410 (2003)

    ADS  Google Scholar 

  15. Michael Schindler and Frank C Hawthorne, J. Solid State Chem. 146, 271 (1999)

    Article  ADS  Google Scholar 

  16. D C Johnston, R K Kremer, M Troyer, X Wang and A Klümper, Phys. Rev. B61, 9558 (2000)

    ADS  Google Scholar 

  17. J C Bonner and M E Fisher, Phys. Rev. 135, A640 (1964)

    Article  ADS  Google Scholar 

  18. W E Hatfield, J. Appl. Phys. 52, 1985 (1981)

    Article  ADS  Google Scholar 

  19. Richard L Carlin, Charles J O’Conner and Som N Bhatia, J. Am. Chem. Soc. 98, 3523 (1976)

    Article  Google Scholar 

  20. G Xiao, M Z Cieplak, J Q Xiao and C L Chien, Phys. Rev. B42, 8752 (1990)

    ADS  Google Scholar 

  21. M Hucker and B Buchner, Phys. Rev. B65, 214408 (2002)

    ADS  Google Scholar 

  22. H Asakawa, M Matsuda, K Minami, H Yamazaki and K Katsumata, Phys. Rev. B57, 8285 (1998)

    ADS  Google Scholar 

  23. Y Uchiyama, Y Sasago, I Tsukado, K Uchinokura, A Zheludev, T Hayashi, N Miura and P Boni, Phys. Rev. Lett. 83, 632 (1999)

    Article  ADS  Google Scholar 

  24. J Das, A V Mahajan, J Bobroff, H Alloul, F Alet and E S Sorensen, Phys. Rev. B69, 144404 (2004)

    ADS  Google Scholar 

  25. B Schmidt, V Yushankhai, L Siurakshina and P Thalmeier, Eur. Phys. J. B32, 43 (2003)

    ADS  Google Scholar 

  26. R Kubo, Phys. Rev. 87, 568 (1952)

    Article  MATH  ADS  Google Scholar 

  27. V Kiryukhin, Y J Kim, K J Thomas and F C Chou, Phys. Rev. B63, 144418 (2001)

    ADS  Google Scholar 

  28. C J Gorter, Rev. Mod. Phys. 25, 277 (1053)

    Google Scholar 

  29. Frederic Keffer, Handbuch der Physik edited by H P J Wijn (Springer-Verlag, Berlin, 1966) Vol. XVIII/2, 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Bhatia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, S.N., Mohapatra, N., Nirmala, R. et al. The effect of spin dilution on magnetism of the linear chain system β-Cu2−x Zn x V2O7 . Pramana - J Phys 74, 833–843 (2010). https://doi.org/10.1007/s12043-010-0103-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0103-y

Keywords

Navigation