Skip to main content
Log in

Testing fundamental symmetries using radioactive ion beams at TRIUMF-ISAC

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The ISAC Facility at TRIUMF, Canada’s national laboratory for particle and nuclear physics, provides rare isotope beams for a diverse research program. In this paper we summarize some recent experimental developments at TRIUMF pertaining to fundamental symmetry tests. These tests use the atomic nucleus as a probe to search for physics beyond the Standard Model. Some recent results and future plans are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W A Cottingham and D A Greenwood, An introduction to the standard model of particle physics (Cambridge University Press, 1998)

  2. M K Gaillard, P D Grannis and F J Sciulli, Rev. Mod. Phys. 71, S96 (1999)

    Article  Google Scholar 

  3. W J Marciano and Z Parsa, Ann. Rev. Nucl. Part. Sci. 36, 171 (1986)

    Article  ADS  Google Scholar 

  4. C Quigg, Ann. Rev. Nucl. Part. Sci. 59, 505 (2009)

    Article  ADS  Google Scholar 

  5. T Muta, Foundations of quantum chromodynamics, 2nd edition (World Scientific, Singapore, 1998)

    MATH  Google Scholar 

  6. F J Ynduráin, The theory of quark and gluon interactions, 3rd edition (Springer-Verlag, Heidelberg, 1999)

    MATH  Google Scholar 

  7. R K Ellis, W J Stirling and B R Webber, QCD and collider physics (Cambridge University Press, 1996)

  8. Gordon L Kane, Nucl. Phys. B-Proc. Supp. 8, 469 (1989)

    Article  ADS  Google Scholar 

  9. P Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001)

    Article  ADS  Google Scholar 

  10. Nathal Severijns, Marcus Beck and Oscar Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006)

    Article  ADS  Google Scholar 

  11. E Fermi, Z. Phys. 88, 161 (1934)

    Article  MATH  ADS  Google Scholar 

  12. T D Lee and C N Yang, Phys. Rev. 104, 254 (1956)

    Article  ADS  Google Scholar 

  13. These are real if the interaction type is time-reversal even.

  14. J D Jackson, S B Treiman and H W Wyld Jr., Phys. Rev. 106, 517 (1957)

    Article  ADS  Google Scholar 

  15. J D Jackson, S B Treiman and H W Wyld Jr., Nucl. Phys. 4, 206 (1957)

    Article  Google Scholar 

  16. Frank P Calaprice et al, Phys. Rev. Lett. 18, 918 (1967)

    Article  ADS  Google Scholar 

  17. C S Wu et al, Phys. Rev. 105, 1413 (1957)

    Article  ADS  Google Scholar 

  18. Richard L Garwin et al, Phys. Rev. 105, 1415 (1957)

    Article  ADS  Google Scholar 

  19. R P Feynman and M Gell-mann, Phys. Rev. 109, 193 (1958)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. E C G Sudarshan and R E Marshak, Phys. Rev. 109, 1860 (1958)

    Article  ADS  Google Scholar 

  21. M A B Bég, R V Budny, R Mohapatra and A Sirlin, Phys. Rev. Lett. 38, 1252 (1977)

    Article  ADS  Google Scholar 

  22. S Profumo, M J Ramsey-Musolf and S Tulin, Phys. Rev. D75, 075017 (2007)

    ADS  Google Scholar 

  23. Although there are many groups at TRIUMF involved in this field, this paper describes only experiments that use nuclear beta decays for such tests.

  24. P G Bricault, M Dombsky, P W Schmor and G Stanford, Nucl. Instrum. Methods Phys. Res. B126, 231 (1997)

    ADS  Google Scholar 

  25. P G Bricault, Eur. Phys. J. Special Topics 150, 227 (2007)

    Article  ADS  Google Scholar 

  26. J A Behr and G Gwinner, J. Phys. G: Nucl. Part. Phys. 36, 033101 (2009)

    Article  ADS  Google Scholar 

  27. J R A Pitcairn et al, Phys. Rev. C79, 015501 (2009)

    ADS  Google Scholar 

  28. M Trinczek et al, Phys. Rev. Lett. 90, 012501 (2003)

    Article  ADS  Google Scholar 

  29. The pseudoscalar bilinear term, \( \bar \psi _p \) pγ5ψn in eq. (1) can be ignored since it vanishes for non-relativistic nucleons

  30. A Gorelov et al, Phys. Rev. Lett. 94, 142501 (2005)

    Article  ADS  Google Scholar 

  31. J A Behr, private communication

  32. R P MacDonald et al, Phys. Rev. D78, 032010 (2008)

    ADS  Google Scholar 

  33. D G Melconian, Measurement of the neutrino asymmetry in the β-decay of lasercooled, polarized 37 K, Ph.D thesis (Simon Fraser University, 2005)

  34. D Melconian et al, Phys. Lett. B649, 370 (2007)

    ADS  Google Scholar 

  35. Nicola Cabibbo, Phys. Rev. Lett. 10, 531 (1963)

    Article  ADS  Google Scholar 

  36. M Kobayashi and T Maskawa, Prog. Theor. Phys. 49, 652 (1973)

    Article  ADS  Google Scholar 

  37. Similar mixing also occurs in the leptonic sector owning to non-zero neutrino masses

  38. J C Hardy and I S Towner, Phys. Rev. C79, 055502 (2009)

    ADS  Google Scholar 

  39. Paul Langacker and David London, Phys. Rev. D38, 886 (1988)

    ADS  Google Scholar 

  40. V Ryjkov et al, Phys. Rev. Lett. 101, 012501 (2008)

    Article  ADS  Google Scholar 

  41. M Smith et al, Phys. Rev. Lett. 101, 202501 (2008)

    Article  ADS  Google Scholar 

  42. M Brodeur et al, Phys. Rev. C80, 044318 (2009)

    ADS  Google Scholar 

  43. M Froese et al, Hyp. Int. 173, 85 (2006)

    Article  ADS  Google Scholar 

  44. V T Koslowsky et al, Nucl. Instrum. Methods Phys. Res. Sect. A401, 289 (1997)

    Article  ADS  Google Scholar 

  45. G F Grinyer et al, Phys. Rev. C77, 015501 (2008)

    ADS  Google Scholar 

  46. P Finlay, private communication

  47. C E Svensson et al, Nucl. Instrum. Methods Phys. Res. Sect. B204, 660 (2003)

    Article  ADS  Google Scholar 

  48. G C Ball et al, J. Phys. G31, S1491 (2005)

    Google Scholar 

  49. P Finlay et al, Phys. Rev. C78, 025502 (2008)

    ADS  Google Scholar 

  50. B Hyland et al, Phys. Rev. Lett. 97, 102501 (2006)

    Article  ADS  Google Scholar 

  51. G F Grinyer et al, Nucl. Instrum. Methods Phys. Res. Sect. A579, 1005 (2007)

    Article  ADS  Google Scholar 

  52. G F Grinyer et al, Phys. Rev. C76, 025503 (2007)

    ADS  Google Scholar 

  53. Barry R Holstein and S B Treiman, Phys. Rev. D13, 3059 (1976)

    ADS  Google Scholar 

  54. Laszlo Grenacs, Ann. Rev. Nucl. Part. Sci. 35, 455 (1985)

    Article  ADS  Google Scholar 

  55. Steven Weinberg, Phys. Rev. 112, 1375 (1958)

    Article  MATH  ADS  Google Scholar 

  56. N Kaiser, Phys. Rev. C64, 028201 (2001)

    ADS  Google Scholar 

  57. Barry R Holstein and S B Treiman, Phys. Rev. D16, 2369 (1977)

    ADS  Google Scholar 

  58. O Naviliat-Cuncic et al, J. Phys. G: Nucl. Part. Phys. 17, 919 (1991)

    Article  ADS  Google Scholar 

  59. F P Calaprice et al, Phys. Rev. Lett. 35, 1566 (1975)

    Article  ADS  Google Scholar 

  60. D F Schreiber, The beta symmetry of Neon-19: An experimental test for second class currents, Ph.D. thesis (Princeton University, 1983)

  61. G L Jones, A measurement of the beta decay asymmetry of 19 Ne as a test of the Standard Model, Ph.D. thesis (Princeton University, 1996)

  62. O Naviliat-Cuncic and N Severijns, Phys. Rev. Lett. 102, 142302 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Triambak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triambak, S. Testing fundamental symmetries using radioactive ion beams at TRIUMF-ISAC. Pramana - J Phys 75, 149–162 (2010). https://doi.org/10.1007/s12043-010-0074-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0074-z

Keywords

Navigation