Skip to main content
Log in

Radioactive nuclear beams: Present and future

  • Nuclei
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Some results of investigations into a new nuclear-physics field associated with the production of radioactive nuclear beams and physical studies with these beams are presented. The most recent results obtained by studying the structure of nuclei and reaction mechanisms with radioactive nuclear beams are surveyed. Data obtained in Dubna at the DRIBs accelerator complex are presented along with allied results from other research centers. In this connection, existing experimental data on light loosely bound exotic nuclei are discussed. The parameters of DRIBs3, which is a new accelerator complex, are presented, and the physics research program that will be implemented with the aid of new setups, including a high-resolution magnetic analyzer (MAVR) and a 4π neutron detector (TETRA), is described. A collaboration in the realms of employing radioactive nuclear beams at the DRIBs complex together with other accelerator complexes [SPIRAL2 (France), RIKEN (Japan), FAIR (Germany), and RIBF (CIIIA)] on the basis of employing new highly efficient experimental facilities has already led to the discovery of new phenomena in nuclear physics and will make it possible to study in the future new regions of nuclear matter in extreme states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. T. Diamond, Nucl. Instrum.Methods Phys. Res. A 432, 471 (1999).

    Article  ADS  Google Scholar 

  2. Yu. Ts. Oganessian et al., Preprint JINR No. E7-2000-83 (Joint Inst. Nucl. Res., Dubna, 2000).

    Google Scholar 

  3. Yu. E. Penionzhkevich, Phys. At. Nucl. 71, 1127 (2008).

    Article  Google Scholar 

  4. N. I. Tarantin, Phys. Part. Nucl. 26, 440 (1995).

    Google Scholar 

  5. L. Gaudefroy, W. Mittig, N. A. Orr, et al., Phys. Rev. Lett. 109, 202503 (2012).

    Article  ADS  Google Scholar 

  6. T. Motobayashi et al., Phys. Lett. B 346, 9 (1995).

    Article  ADS  Google Scholar 

  7. D. Sohler et al., Phys. Rev. C 66, 054302 (2002).

    Article  ADS  Google Scholar 

  8. Yu. S. Lyutostanskii et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 53, 29 (1989).

    Google Scholar 

  9. C. Thibault et al., Phys. Rev. C 12, 644 (1975).

    Article  ADS  Google Scholar 

  10. F. Sarazin et al., Phys. Rev. Lett. 84, 5062 (2000).

    Article  ADS  Google Scholar 

  11. Yu. E. Penionzhkevich, Phys. At. Nucl 77, 75 (2014).

    Article  Google Scholar 

  12. F. M. Marqués et al., Phys. Lett. B 381, 4407 (1996).

    Article  ADS  Google Scholar 

  13. I. Tanihata et al., Prog. Part. Nucl. Phys. 35, 505 (1995).

    Article  ADS  Google Scholar 

  14. O. M. Knyaz’kov et al., Phys. At. Nucl 59, 1138 (1996).

    Google Scholar 

  15. A. Goldhaber, Phys. Lett. B 53, 306 (1974).

    Article  ADS  Google Scholar 

  16. R. Anne et al., Phys. Lett. B 250, 19 (1990).

    Article  ADS  Google Scholar 

  17. N. Orr et al., Phys. Rev. Lett. 69, 2050 (1992).

    Article  ADS  Google Scholar 

  18. R. Kalpakchieva et al., Phys. At. Nucl. 70, 619 (2007).

    Article  Google Scholar 

  19. K. Arai et al., Phys. Rev. C 51, 2488 (1995).

    Article  ADS  Google Scholar 

  20. N. K. Skobelev et al., Z. Phys. A 341, 315 (1992).

    Article  ADS  Google Scholar 

  21. Yu. Ts. Oganessian, V. I. Zagrebaev, and J. S. Vaagen, Phys. Rev. Lett. 82, 4996 (1999).

    Article  ADS  Google Scholar 

  22. A. S. Fomichev et al., Z. Phys. A 351, 129 (1995).

    Article  ADS  Google Scholar 

  23. M. S. Hussein et al., Phys. Rev. C 46, 377 (1992).

    Article  ADS  Google Scholar 

  24. J. J. Kolata et al., Phys. Rev. Lett. 81, 4580 (1998).

    Article  ADS  Google Scholar 

  25. A. Lemasson et al., Phys. Rev. Lett. 103, 232701 (2009).

    Article  ADS  Google Scholar 

  26. Yu. E. Penionzhkevich, Int. J. Mod. Phys. E 20, 938 (2011).

    Article  ADS  Google Scholar 

  27. N. K. Skobelev, Phys. At. Nucl. 77(11) (2014, in press).

    Google Scholar 

  28. Yu. A. Muzychka and B. I. Pustylnik, in Proceedings of the International School-Seminar on Heavy-Ion Physics, Alushta, 1983, Preprint JINR No. D7-83-644 (Joint Inst. Nucl. Res., Dubna, 1983), p. 420.

    Google Scholar 

  29. V. I. Zagrebaev, Phys. Rev. C 67, 061601(R) (2003).

    Article  ADS  Google Scholar 

  30. Yu. E. Penionzhkevich et al., Phys. Rev. Lett. 96, 162701 (2006).

    Article  ADS  Google Scholar 

  31. S.M. Lukyanov et al., Phys. Lett. B 670, 321 (2009).

    Article  ADS  Google Scholar 

  32. T. Kobayashi et al., Nucl. Phys. A 538, 343 (1992).

    Article  ADS  Google Scholar 

  33. A. A. Korsheninnikov et al., Phys. Rev. C 53, R537 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Penionzhkevich.

Additional information

Original Russian Text © Yu.E. Penionzhkevich, 2014, published in Yadernaya Fizika, 2014, Vol. 77, No. 11, pp. 1465–1479.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penionzhkevich, Y.E. Radioactive nuclear beams: Present and future. Phys. Atom. Nuclei 77, 1400–1414 (2014). https://doi.org/10.1134/S1063778814110052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778814110052

Keywords

Navigation