Skip to main content
Log in

Transport properties of poly(GACT)-poly(CTGA) deoxyribonucleic acid: A ladder model approach

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, based on the tight-binding Hamiltonian model and within the framework of a generalized Green’s function technique, the electronic conduction through the poly(GACT)-poly(CTGA) DNA molecule in SWNT/DNA/SWNT structure has been numerically investigated. In a ladder model, we consider DNA as a planar molecule containing M cells and four further sites (two base pair sites and two backbone sites) in each cell, sandwiched between two semi-infinite single-walled carbon nanotubes (SWNT) as the electrodes. Having relied on Landauer formalism, we focussed on studying the current-voltage characteristics of DNA, the effect of the coupling strength of SWNT/DNA interface and the role of tube radius of nanotube contacts on the electronic transmission through the foregoing structure. Finally, a characteristic time was calculated for the electron transmission, which measures the delay caused by the tunnelling through the SWNT/DNA interface. The results clearly show that the calculated characteristic time and also the conductance of the system are sensitive to the coupling strength between DNA molecule and nanotube contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Cuniberti, L Craco, D Porath and C Dekker, Phys. Rev. B65, 241314 (2002)

    Google Scholar 

  2. I L Garzon, E Artacho, M R Beltran, A Garcia, J Junquera, K Michaelian, P Ordejon, D Sanchez-Portal and J M Soler, Nanotechnology 12, 126 (2001)

    Article  ADS  Google Scholar 

  3. A Rakitin, P Aich, C Papadopoulos, Y Kobzar, A S Vedeneev, J S Lee and J M Xu, Phys. Rev. Lett. 86, 3670 (2001)

    Article  ADS  Google Scholar 

  4. P Qi, A Javey, M Rolandi, Q Wang, E Yenilmez and H Dai, J. Am. Chem. Soc. 126, 11774 (2004)

    Article  Google Scholar 

  5. T K Sasaki, A Ikegami, M Mochizuki, N Aoki and Y Ochiai, IPAP Conf. Series 5, No. 297 (2004)

  6. B W Smith, R M Russo, S B Chikkannanavar, F Stercel and D E Luzzi, MRS Proceedings 706, Fall Meeting Symposium Z (3.13) (2001)

  7. G Cuniberti, R Gutierrez, G Fagas, F Grossmann, K Richter and R Schmidt, Physica E12, 749 (2002)

    ADS  Google Scholar 

  8. G C Liang, A W Ghosh, M Paulsson and S Datta, Phys. Rev. B69, 115302 (2004)

    Google Scholar 

  9. J Guo, J Wang, E Polizzi, S Datta and M Lundstrom, IEEE Trans. Nanotech. 2, 329 (2003)

    Article  ADS  Google Scholar 

  10. R G Endres, D L Cox and R R P Singh, Rev. Mod. Phys. 76, 195 (2004)

    Article  ADS  Google Scholar 

  11. D Porath, G Cuniberti and R di Felice, Topics in current chemistry (Springer, Berlin, 2004) Vol. 237, p. 183

    Google Scholar 

  12. K W Hipps, Science 294, 536 (2001)

    Article  Google Scholar 

  13. A J Storm, J V Noort, S de Vries and C Dekker, Appl. Phys. Lett. 79, 3881 (2001)

    Article  ADS  Google Scholar 

  14. D Porath, A Bezryadin, S de Vries and C Dekker, Nature (London) 403, 635 (2000)

    Article  ADS  Google Scholar 

  15. Y-H Yoo, D H Ha, J-O Lee, J W Park, J Kim, J J Kim, H-Y Lee, T Kawai and Han Yong Choi, Phys. Rev. Lett. 87, 198102 (2001)

    Google Scholar 

  16. B Xu, P Zhang, X Li and N Tao, Nano Lett. 4, 1105 (2004)

    Article  ADS  Google Scholar 

  17. D Klosta, R A Römer and M S Turner, J. Biophys. 89, 2187 (2005)

    Article  Google Scholar 

  18. S Roche, D Bicout, E Maciá and E Kats, Phys. Rev. Lett. 91, 228101 (2003)

    Google Scholar 

  19. S Roche, Phys. Rev. Lett. 91, 108101 (2003)

    Google Scholar 

  20. H Wang, J P Lewis and O F Sankey, Phys. Rev. Lett. 93, 016401 (2004)

    Google Scholar 

  21. W Zhang and S E Ulloa, Phys. Rev. B69, 153203 (2004)

  22. P J de Pablo, F Moreno-Herrero, J Colchero, J Gomez Herrero, P Herrero, A M Baro, Pablo Ordejon, Jose M Soler and E Artacho, Phys. Rev. Lett. 85, 4992 (2000)

    Article  ADS  Google Scholar 

  23. J H Wei and K S Chan, J. Phys.: Condens. Matter 19, 286101 (2007)

    Google Scholar 

  24. H M Moghaddam, S A Ketabi and N Shahtahmasebi, J. Phys.: Condens. Matter 19, 116211 (2007)

  25. E Maciá, F Triozon and S Roche, Phys. Rev. B71, 113106 (2005)

  26. U Peskin, M Galperin and A Nitzan, J. Phys. Chem. B106, 8306 (2002)

    Google Scholar 

  27. A Nitzan, J Jortner, J Wilkie, A L Burin and M A Ratner, J. Phys. Chem. B104, 5661 (2000)

    Google Scholar 

  28. J D Watson and F H C Crick, Nature (London) 171, 737 (1953)

    Article  ADS  Google Scholar 

  29. H Y Zhang, X Q Li, P Han, X Y Yu and Y J Yan, J. Chem. Phys. 117, 4578 (2002)

    Article  ADS  Google Scholar 

  30. P O Löwdin, J. Math. Phys. 3, 969 (1962)

    Article  MATH  ADS  Google Scholar 

  31. E Maciá, Phys. Rev. B75, 035130 (2007)

  32. M Buttiker, Y Imry, R Landauer and S Pinhas, Phys. Rev. B31, 6207 (1985)

    ADS  Google Scholar 

  33. V Mujica, M Kemp and M A Ratner, J. Chem. Phys. 101, 6849 (1994)

    Article  ADS  Google Scholar 

  34. B Larade and A M Bratkovsky, Phys. Rev. B68, 235305 (2003)

    Google Scholar 

  35. D S Fisher and P A Lee, Phys. Rev. B23, R6851 (1981)

    ADS  MathSciNet  Google Scholar 

  36. G Cuniberti, G Fagas and K Richter, Chem. Phys. 281, 465 (2002)

    Article  Google Scholar 

  37. T Martin and R Landauer, Phys. Rev. A47, 2023 (1993)

    ADS  Google Scholar 

  38. S Data, Electronic transport in mesoscopic systems (Oxford University Press, New York, 1995)

    Google Scholar 

  39. A Nitzan, Annu. Rev. Phys. Chem. 52, 681 (2001)

    Article  Google Scholar 

  40. J W G Wildoer, L C Venema, A G Rinzler, R E Smalley and C Dekker, Nature (London) 391, 59 (1998)

    Article  ADS  Google Scholar 

  41. T D Yuzvinsky, W Mickelson, S Aloni, G E Begtrup, A Kis and A Zettl, Nano Lett. 6, 2718 (2006)

    Article  ADS  Google Scholar 

  42. P Kim, T W Odom, J L Huang and C M Lieber, Phys. Rev. Lett. 82, 1225 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ketabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketabi, S.A., Fouladi, A.A. Transport properties of poly(GACT)-poly(CTGA) deoxyribonucleic acid: A ladder model approach. Pramana - J Phys 72, 1023–1036 (2009). https://doi.org/10.1007/s12043-009-0082-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0082-z

Keywords

PACS Nos

Navigation