Skip to main content
Log in

Electronic behavior of randomly dislocated RNA and DNA nanowires: a multi-model approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, the electronic properties of DNA and RNA nanowires are investigated by means of band structure and density of states using the framework of the tight-binding model and the Green’s function formalism. Two different manners are considered for performing calculations: with zero and nonzero on-site energies. In each manner, the infinite DNA double-strand has been modeled by three different models: a fishbone model and two different double-strand models, and a half ladder model has been used for modeling the infinite RNA strand. Inside each system, the size of the unit cells is increased step by step for a more accurate simulation of an actual DNA and RNA nanowire. The results reveal that in both manners, increasing the number of sites inside the unit cells of all models reduces the influence of randomness on the electronic properties. In addition, the individual consideration of the sugar-phosphate backbone in the models has created the intra- and inter-bandgaps in both the band structure diagrams and the density of states curves. To investigate the effect of damage on the electronic properties of the studied systems, it has been assumed that 2 and 8 defects occur in each system. It has been observed that increasing the number of bases along the unit cell of the models suppresses the influence of damage on the electronic properties of DNA and RNA molecules. It was also found that for nonzero on-site energies, the effect of damage becomes more pronounced. Also, by the appearance of defects in the models, the localized sharp peaks occur in the DOS curves. Overall, the introduced method in this paper can be applied to study the electronic structure of damaged DNA and RNA nanowires.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data supporting this study are available from the corresponding author upon reasonable request.]

References

  1. J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356), 737–738 (1953)

    Article  ADS  Google Scholar 

  2. R. Langridge, P.J. Gomatos, The structure of RNA: reovirus RNA and transfer RNA have similar three-dimensional structures, which differ from DNA. Science 141(3582), 694–698 (1963)

    Article  ADS  Google Scholar 

  3. S. Naito, A. Ishihama, Function and structure of RNA polymerase from vesicular stomatitis virus. J. Biol. Chem. 251(14), 4307–4314 (1976)

    Article  Google Scholar 

  4. D.N. Lee, R. Landick, Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. J. Mol. Biol. 228(3), 759–777 (1992)

    Article  Google Scholar 

  5. R.E. Haurwitz, M. Jinek, B. Wiedenheft, K. Zhou, J.A. Doudna, Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 329(5997), 1355–1358 (2010)

    Article  ADS  Google Scholar 

  6. S. Ram Kumar Pandian, C.-J. Yuan, C.-C. Lin, W.-H. Wang, C.-C. Chang, DNA-based nanowires and nanodevices. Adv. Phys. X 2(1), 22–34 (2017)

    Google Scholar 

  7. R. Chhabra, J. Sharma, Y. Liu, S. Rinker, H. Yan, DNA self-assembly for nanomedicine. Adv. Drug Deliv. Rev. 62(6), 617–625 (2010)

    Article  Google Scholar 

  8. J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, H. Yan, Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323(5910), 112–116 (2009)

    Article  ADS  Google Scholar 

  9. N. Stephanopoulos, J.H. Ortony, S.I. Stupp, Self-assembly for the synthesis of functional biomaterials. Acta Mater. 61(3), 912–930 (2013)

    Article  ADS  Google Scholar 

  10. M. Peyrard, Melting the double helix. Nat. Phys. 2(1), 13–14 (2006)

    Article  Google Scholar 

  11. N.C. Seeman, H.F. Sleiman, DNA nanotechnology. Nat. Rev. Mater. 3(1), 1–23 (2017)

    Google Scholar 

  12. K. Mizoguchi, H. Sakamoto, DNA Engineering: Properties and Applications (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  13. D.A. LaVan, D.M. Lynn, R. Langer, Moving smaller in drug discovery and delivery. Nat. Rev. Drug Discov. 1(1), 77–84 (2002)

    Article  Google Scholar 

  14. V.C. Diculescu, A.-M. Chiorcea-Paquim, A.M. Oliveira-Brett, Applications of a DNA-electrochemical biosensor. TrAC Trends Anal. Chem. 79, 23–36 (2016)

    Article  Google Scholar 

  15. J. Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21(10), 1887–1892 (2006)

    Article  Google Scholar 

  16. S. Rahong, T. Yasui, T. Yanagida, K. Nagashima, M. Kanai, A. Klamchuen, G. Meng, Y. He, F. Zhuge, N. Kaji et al., Ultrafast and wide range analysis of DNA molecules using rigid network structure of solid nanowires. Sci. Rep. 4(1), 1–8 (2014)

    Google Scholar 

  17. T. Yasui, S. Rahong, K. Motoyama, T. Yanagida, W. Qiong, N. Kaji, M. Kanai, K. Doi, K. Nagashima, M. Tokeshi et al., DNA manipulation and separation in sublithographic-scale nanowire array. ACS Nano 7(4), 3029–3035 (2013)

    Article  Google Scholar 

  18. V.M. Arole, S.V. Munde, Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. J. Mater. Sci 1, 89–93 (2014)

    Google Scholar 

  19. A. Biswas, I.S. Bayer, A.S. Biris, T. Wang, E. Dervishi, F. Faupel, Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170(1–2), 2–27 (2012)

    Article  Google Scholar 

  20. K. Tapio, J. Leppiniemi, B. Shen, V.P. Hytonen, W. Fritzsche, J.J. Toppari, Toward single electron nanoelectronics using self-assembled DNA structure. Nano Lett. 16(11), 6780–6786 (2016)

    Article  ADS  Google Scholar 

  21. C.J. Murphy, M.R. Arkin, Y. Jenkins, N.D. Ghatlia, S.H. Bossmann, N.J. Turro, J.K. Barton, Long-range photoinduced electron transfer through a DNA helix. Science 262(5136), 1025–1029 (1993)

    Article  ADS  Google Scholar 

  22. S.S. Mallajosyula, S.K. Pati, Toward DNA conductivity: a theoretical perspective. J. Phys. Chem. Lett. 1(12), 1881–1894 (2010)

    Article  Google Scholar 

  23. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Dna-templated assembly and electrode attachment of a conducting silver wire. Nature 391(6669), 775–778 (1998)

    Article  ADS  Google Scholar 

  24. D. Porath, A. Bezryadin, S. De Vries, C. Dekker, Direct measurement of electrical transport through DNA molecules. Nature 403(6770), 635–638 (2000)

    Article  ADS  Google Scholar 

  25. H.-W. Fink, C. Schönenberger, Electrical conduction through DNA molecules. Nature 398(6726), 407–410 (1999)

    Article  ADS  Google Scholar 

  26. F. Bogár, A. Bende, J. Ladik, Influence of the sequence on the ab initio band structures of single and double stranded DNA models. Phys. Lett. A 378(30–31), 2157–2162 (2014)

    Article  ADS  Google Scholar 

  27. R. Di Felice, A. Calzolari, H. Zhang, Towards metalated DNA-based structures. Nanotechnology 15(9), 1256 (2004)

    Article  ADS  Google Scholar 

  28. Q. Cui, M. Elstner, Density functional tight binding: values of semi-empirical methods in an ab initio era. Phys. Chem. Chem. Phys. 16(28), 14368–14377 (2014)

    Article  Google Scholar 

  29. O.R. Davies, J.E. Inglesfield, Embedding method for conductance of DNA. Phys. Rev. B 69(19), 195110 (2004)

    Article  ADS  Google Scholar 

  30. G. Cuniberti, L. Craco, D. Porath, C. Dekker, Backbone-induced semiconducting behavior in short DNA wires. Phys. Rev. B 65(24), 241314 (2002)

    Article  ADS  Google Scholar 

  31. H. Mousavi, J. Khodadadi, M. Grabowski, Electronic properties of long DNA nanowires in dry and wet conditions. Solid State Commun. 222, 42–48 (2015)

    Article  ADS  Google Scholar 

  32. H. Mousavi, M. Grabowski, Nonlinear electron transport across short DNA segment between graphene leads. Solid State Commun. 279, 30–33 (2018)

    Article  ADS  Google Scholar 

  33. H. Mousavi, S. Jalilvand, S.S. Sani, J.A.L. Hartman, M. Grabowski, Electronic properties of different configurations of double-strand DNA-like nanowires. Solid State Commun. 319, 113974 (2020)

    Article  Google Scholar 

  34. D. Klotsa, R.A. Römer, M.S. Turner, Electronic transport in DNA. Biophys. J. 89(4), 2187–2198 (2005)

    Article  Google Scholar 

  35. T. Chakraborty, Charge Migration in DNA: Perspectives from Physics, Chemistry, and Biology (Springer, Berlin, 2007)

    Book  Google Scholar 

  36. K. Lambropoulos, C. Simserides, Tight-binding modeling of nucleic acid sequences: interplay between various types of order or disorder and charge transport. Symmetry 11(8), 968 (2019)

    Article  Google Scholar 

  37. R.N. Barnett, C.L. Cleveland, A. Joy, U. Landman, G.B. Schuster, Charge migration in DNA: ion-gated transport. Science 294(5542), 567–571 (2001)

    Article  ADS  Google Scholar 

  38. X. Bingqian, P. Zhang, X. Li, N. Tao, Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett. 4(6), 1105–1108 (2004)

    Article  ADS  Google Scholar 

  39. S.S. Mallajosyula, J.C. Lin, D.L. Cox, S.K. Pati, R.R.P. Singh, Sequence dependent electron transport in wet DNA: ab initio and molecular dynamics studies. Phys. Rev. Lett. 101(17), 176805 (2008)

    Article  ADS  Google Scholar 

  40. J. Cadet, T. Douki, Formation of UV-induced DNA damage contributing to skin cancer development. Photochem. Photobiol. Sci. 17(12), 1816–1841 (2018)

    Article  Google Scholar 

  41. L. He, G.J. Hannon, Micrornas: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5(7), 522–531 (2004)

    Article  Google Scholar 

  42. G.A. Calin, C.M. Croce, Microrna signatures in human cancers. Nat. Rev. Cancer 6(11), 857–866 (2006)

    Article  Google Scholar 

  43. J.I.N. Oliveira, E.L. Albuquerque, U.L. Fulco, P.W. Mauriz, R.G. Sarmento, E.W.S. Caetano, V.N. Freire, Conductance of single micrornas chains related to the autism spectrum disorder. EPL (Europhys. Lett.) 107(6), 68006 (2014)

    Article  ADS  Google Scholar 

  44. P.M. Flatt, Biochemistry-Defining Life at the Molecular Level (Western Oregon University, Monmouth, 2019)

    Google Scholar 

  45. C. Debouck, P.N. Goodfellow, DNA microarrays in drug discovery and development. Nat. Genet. 21(1), 48–50 (1999)

    Article  Google Scholar 

  46. S.-M. Yoo, J.-H. Choi, S.-Y. Lee, N.-C. Yoo, Applications of DNA microarray in disease diagnostics. J. Microbiol. Biotechnol. 19(7), 635–646 (2009)

    Google Scholar 

  47. K.G. Petrosyan, C.-K. Hu, Fluctuation effects in gene regulation by micrornas and correlations between gene and pseudogene mRNAs in the control of cancer. J. Stat. Mech. Theory Exp. 2015(7), P07019 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Mousavi, M. Mirzaei, S. Jalilvand, S.S. Sani, Vibrational properties of DNA in different models. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1916134

    Article  Google Scholar 

  49. H. Mousavi, M. Mirzaei, S. Jalilvand, Mechanical response of double-stranded DNA to dynamic excitation. J. Vib. Control (2021). https://doi.org/10.1177/10775463211045803

    Article  Google Scholar 

  50. A.J. Baeumner, R.N. Cohen, V. Miksic, J. Min, RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens. Bioelectron. 18(4), 405–413 (2003)

    Article  Google Scholar 

  51. W. Vercoutere, M. Akeson, Biosensors for DNA sequence detection. Curr. Opin. Chem. Biol. 6(6), 816–822 (2002)

    Article  Google Scholar 

  52. M. Santhanam, I. Algov, L. Alfonta, DNA/RNA electrochemical biosensing devices a future replacement of PCR methods for a fast epidemic containment. Sensors 20(16), 4648 (2020)

    Article  ADS  Google Scholar 

  53. S.A. Wells, C.-T. Shih, R.A. Römer, Modelling charge transport in DNA using transfer matrices with diagonal terms. Int. J. Mod. Phys. B 23, 4138–4149 (2009)

    Article  ADS  MATH  Google Scholar 

  54. E. Kaxiras, Atomic and Electronic Structure of Solids (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  55. G. Grosso, G.P. Parravicini, Solid State Physics (Academic Press, Cambridge, 2013)

    Google Scholar 

  56. H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (OUP Oxford, Oxford, 2004)

    Google Scholar 

  57. H. Mousavi, S. Jalilvand, J. Khodadadi, M. Yousefvand, Tight-binding description of semiconductive conjugated polymers. Comput. Theor. Chem. 1199, 113190 (2021)

    Article  Google Scholar 

  58. I.V. Bondarev, H. Mousavi, V.M. Shalaev, Transdimensional epsilon-near-zero modes in planar plasmonic nanostructures. Phys. Rev. Res. 2(1), 013070 (2020)

    Article  Google Scholar 

  59. H. Mousavi, J. Khodadadi, Flake electrical conductivity of few-layer graphene. Sci. World J. 1, 1 (2014). https://doi.org/10.1155/2014/581478

    Article  Google Scholar 

  60. S. Jalilvand, H. Mousavi, Multi-band tight-binding model of mos2 monolayer. J. Electron. Mater. 49(6), 3599–3608 (2020)

    Article  ADS  Google Scholar 

  61. S.S. Sani, H. Mousavi, M. Asshabi, S. Jalilvand, Electronic properties of graphyne and graphdiyne in tight-binding model. ECS J. Solid State Sci. Technol. 9(3), 031003 (2020)

    Article  ADS  Google Scholar 

  62. H. Mousavi, S. Jalilvand, Electrical and thermal conductivities of few-layer armchair graphene nanoribbons. Eur. Phys. J. B 92(1), 1–11 (2019)

    Article  ADS  Google Scholar 

  63. H. Mousavi, J. Khodadadi, J.M. Kurdestany, Z. Yarmohammadi, Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers. Phys. Lett. A 380(45), 3823–3827 (2016)

    Article  ADS  Google Scholar 

  64. C.J. Páez, P.A. Schulz, N.R. Wilson, R.A. Römer, Robust signatures in the current–voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes. New J. Phys. 14(9), 093049 (2012)

    Article  ADS  Google Scholar 

  65. E.L. Albuquerque, U.L. Fulco, E.W.S. Caetano, V.N. Freire, Quantum Chemistry Simulation of Biological Molecules (Cambridge University Press, Cambridge, 2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Jalilvand.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalilvand, S., Sepahvand, R. & Mousavi, H. Electronic behavior of randomly dislocated RNA and DNA nanowires: a multi-model approach. Eur. Phys. J. Plus 137, 928 (2022). https://doi.org/10.1140/epjp/s13360-022-03167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03167-8

Navigation