Skip to main content
Log in

Bianchi type-V cosmological models with perfect fluid and heat flow in Saez-Ballester theory

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper we discuss the variation law for Hubble’s parameter with average scale factor in a spatially homogeneous and anisotropic Bianchi type-V space-time model, which yields constant value of the deceleration parameter. We derive two laws of variation of the average scale factor with cosmic time, one is of power-law type and the other is of exponential form. Exact solutions of Einstein field equations with perfect fluid and heat conduction are obtained for Bianchi type-V space-time in these two types of cosmologies. In the cosmology with the power-law, the solutions correspond to a cosmological model which starts expanding from the singular state with positive deceleration parameter. In the case of exponential cosmology, we present an accelerating non-singular model of the Universe. We find that the constant value of deceleration parameter is reasonable for the present day Universe and gives an appropriate description of evolution of Universe. We have also discussed different types of physical and kinematical behaviour of the models in these two types of cosmologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C Brans and R H Dicke, Phys. Rev. 124, 925 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. K Nordvedt, Astrophys. J. 161, 1059 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  3. G A Barber, Gen. Relativ. Gravit. 14, 117 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. D Saez and V J Ballester, Phys. Lett. A113, 467 (1985)

    ADS  Google Scholar 

  5. Y K Lau and S J Prokhovnik, Aust. J. Phys. 39, 339 (1986)

    Google Scholar 

  6. C Mathiazhagan and V B Johri, Class. Quantum Gravit. 1, L29 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. D La and P J Steinhardt, Phys. Rev. Lett. 62, 376 (1989)

    Article  ADS  Google Scholar 

  8. A Linde, Phys. Lett. B238, 160 (1990)

    ADS  Google Scholar 

  9. T Singh and A K Agarwal, Astrophys. Space Sci. 182, 289 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. T Singh and A K Agarwal, Astrophys. Space Sci. 191, 61 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. D R K Reddy and V Rao, Astrophys. Space Sci. 277, 461 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. D R K Reddy, M V S Rao and R G Koteswara, Astrophys. Space Sci. 306, 171 (2006)

    Article  ADS  Google Scholar 

  13. Y Deng, Gen. Relativ. Gravit. 21, 503 (1989)

    Article  ADS  Google Scholar 

  14. G Mukherjee, J. Astrphys. Astron. 7, 259 (1986)

    Article  ADS  Google Scholar 

  15. M Novello and M J Reboucas, Astrophys. J. 225, 719 (1978)

    Article  ADS  Google Scholar 

  16. M J Reboucas and J A S Lima, J. Math. Phys. 22, 2699 (1981)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. J M Bradley and E Sviestins, Gen. Relativ. Gravit. 16, 1119 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  18. A Banerjee and A K Sanyal, Gen. Relativ. Gravit. 20, 103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  19. A A Coley, Gen. Relativ. Gravit. 22, 3 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. A A Coley and R J Hoogen, J. Math. Phys. 35, 4117 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. A A Coley and K Dunn, J. Math. Phys. 33, 1772 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. J K Singh, Astrophys. Space Sci. 310, 241 (2007)

    Article  MATH  ADS  Google Scholar 

  23. M S Berman, Nuovo Cimento B74, 182 (1983)

    ADS  Google Scholar 

  24. B Saha and V Rikhvitsky, Physica D219, 168 (2006)

    ADS  MathSciNet  Google Scholar 

  25. T Singh and R Chaubey, Pramana — J. Phys. 68, 721 (2007)

    Article  ADS  Google Scholar 

  26. M S Berman and R M Gomide, Gen. Relativ. Gravit. 20, 191 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  27. C P Singh and S Kumar, Int. J. Mod. Phys. D15, 419 (2006)

    ADS  MathSciNet  Google Scholar 

  28. C P Singh and S Kumar, Pramana — J. Phys. 68, 707 (2007)

    Article  ADS  Google Scholar 

  29. S Kumar and C P Singh, Astrophys. Space Sci. 312, 57 (2007)

    Article  MATH  ADS  Google Scholar 

  30. S Kumar and C P Singh, Int. J. Theor. Phys. 47, 1722 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. S Perlmutter et al, Astrophys. J. 483, 565 (1997)

    Article  ADS  Google Scholar 

  32. S Perlmutter et al, Nature (London) 391, 51 (1998)

    Article  Google Scholar 

  33. S Perlmutter et al, Astrophys. J. 517, 565 (1999)

    Article  Google Scholar 

  34. A G Riess et al, Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ram, S., Zeyauddin, M. & Singh, C.P. Bianchi type-V cosmological models with perfect fluid and heat flow in Saez-Ballester theory. Pramana - J Phys 72, 415–427 (2009). https://doi.org/10.1007/s12043-009-0037-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0037-4

Keywords

PACS Nos

Navigation