Skip to main content
Log in

Slow light with symmetric gap plasmon guides with finite width metal claddings

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We study the dispersion relation and the modes of a symmetric gap plasmon guide, where a dielectric planar slab is coated with finite metallic layers on both top and bottom. The finite conductivity of the metal is taken into account. The modes of the structure exhibit significant differences from those of dielectric waveguides with air or metal as the bounding media. Avoided level crossing phenomenon between the plasmon and the guided modes is shown to exist, leading to leaky modes. The structure sandwiched between two high index media is shown to lead to slow light in transmission. The group delay is shown to be larger for higher order modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W L Barnes, A Dereux and T Ebbesen, Nature (London) 424, 824 (2003)

    Article  ADS  Google Scholar 

  2. S A Mier, P G Kik, H A Atwater, S Meltzer, E Harel, E E Koel and A A Requicha, Nature Mat. 2, 229 (2003)

    Article  ADS  Google Scholar 

  3. V M Agranovich and D L Mills (eds), Surface polaritons (North Holland, Amsterdam, 1982)

    Google Scholar 

  4. J Homola, Annal. Bioanan. Chem. 377, 528 (2003)

    Article  Google Scholar 

  5. Sergei Kuhn, Ulf Hakanson, Lavinia Rogobete and Vahid Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006)

  6. D E Chang, A S Sorensen, P R Hemmer and M D Lukin, Phys. Rev. Lett. 97, 053002-1 (2006)

    Google Scholar 

  7. Fam Le Kien, S Dutta Gupta, V I Balykin and K Hakuta, Phys. Rev. A72, 032509 (2005)

  8. K P Nayak, P N Melentiev, M Morinaga, Fam Le Kien, V I Balykin and K Hakuta, preprint, quant-ph/0610136 (submitted to PRL)

  9. Fam Le Kien, S Dutta Gupta, K P Nayak and K Hakuta, Phys. Rev. A72, 063815 (2005)

  10. E N Economou, Phys. Rev. 182, 539 (1969)

    Article  ADS  Google Scholar 

  11. I P Kaminow, W L Mammel and H P Weber, Appl. Opt. 12, 396 (1974)

    Article  ADS  Google Scholar 

  12. B Prade, J Y Vinet and A Mysyrowicz, Phys. Rev. B44, 13556 (1991)

    ADS  Google Scholar 

  13. Pierre Berini, Phys. Rev. B61, 10484 (2000)

  14. Ian Breukelaar, Robert Charbonneau and Pierre Berini, Appl. Phys. Lett. 88, 051119-1 (2006)

  15. J A Dionne, L A Sweatlock, H A Atwater and A Polman, Phys. Rev. B72, 075405-1, (2005)

    Google Scholar 

  16. J A Dionne, L A Sweatlock, H A Atwater and A Polman, Phys. Rev. B73, 035407-1, (2006)

    Google Scholar 

  17. Rashid Zia, Mark D Selker, Peter B Catrysse and Mark L Brongersma, J. Opt. Soc. Am. A21, 2442 (2004)

    Article  ADS  Google Scholar 

  18. Aristeidis Karalis, E Lidorikis, Mihai Ibanescu, J D Joannopoulos and Marin Soljacic, Phys. Rev. Lett. 95, 063901 (2005)

  19. Michael Hochberg, Tom Baehr-Jones, Chris Walker and Axel Scherer, Opt. Express 12, 5481 (2004)

    Article  ADS  Google Scholar 

  20. Dharmendra Kumar, V K Sharma and K N Tripathi, Opt. Engg. 45, 054601 (2006)

  21. P S Davids, B A Block and K C Kadien, Opt. Express 13, 7063 (2005)

    Article  ADS  Google Scholar 

  22. Peter Debackere, Stijn Scheerlinck, Peter Bienstman and Roel Baets, Opt. Express 14, 7063 (2006)

    Article  ADS  Google Scholar 

  23. C Bergemann, H Keymeulen and J F van der Veen, Phys. Rev. Lett. 91, 204801-1 (2003)

    Google Scholar 

  24. Pavel Ginzburg, David Arbel and Meir Orenstein, Opt. Lett. 31, 3288 (2006)

    Article  ADS  Google Scholar 

  25. C Rohde, K Hasegawa and M Deutsch, Opt. Lett. 32, 415 (2007)

    Article  ADS  Google Scholar 

  26. Rashid Zia, Mark D Selker and Mark L Brongersma, Phys. Rev. B71, 165431-1 (2005)

  27. J Chen, G A Smolyakov, S R J Brueck and K J Malloy, Opt. Express 16, 14902 (2008)

    Article  Google Scholar 

  28. R W Boyd and D J Gauthier, Fast and Slow light, in: Progress in optics edited by E Wolf (Elsevier Science, Amsterdam, 2002), Vol. 43, pp. 497–530

    Google Scholar 

  29. V S C Manga Rao, S Dutta Gupta and G S Agarwal, Opt. Lett. 29, 307 (2004)

    Article  ADS  Google Scholar 

  30. M Kulkarni, N Seshadri, V S C Manga Rao and S Dutta Gupta, J. Mod. Opt. 51, 549 (2004)

    Article  ADS  Google Scholar 

  31. V S C Manga Rao and S Dutta Gupta, J. Opt. A: Pure and Appl. Opt. 6, 756 (2004) [28] U Leonhardt and P Piwnicki, Phys. Rev. A62, 055801 (2000)

    Article  ADS  Google Scholar 

  32. Joe T Mok and Benjamin J Eggleton, Nature (London) 433, 811 (2005)

    Article  ADS  Google Scholar 

  33. M Born and E Wolf, Principles of optics (Pergamon, New York, 1980), Chap. 1.6

    Google Scholar 

  34. E P Wigner, Phys. Rev. 98, 145 (1955)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dutta Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta Gupta, S. Slow light with symmetric gap plasmon guides with finite width metal claddings. Pramana - J Phys 72, 303–314 (2009). https://doi.org/10.1007/s12043-009-0026-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0026-7

Keywords

PACS Nos

Navigation