Skip to main content
Log in

Lattice quantum chromodynamics equation of state: A better differential method

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We propose a better differential method for the computation of the equation of state of QCD from lattice simulations. In contrast to the earlier differential method, our technique yields positive pressure for all temperatures including the temperatures in the transition region. Employing it on temporal lattices of 8, 10 and 12 sites and by extrapolating to zero lattice spacing we obtained the pressure, energy density, entropy density, specific heat and speed of sound in quenched QCD for 0.9 ≤ T/T c ≤ 3. At high temperatures comparisons of our results are made with those from the dimensional reduction approach and also with those from a conformal symmetric theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PHENIX Collaboration: K Adcox et al, Nucl. Phys. A757, 184 (2005)

    ADS  Google Scholar 

  2. BRAHMS Collaboration: I Arsene et al, Nucl. Phys. A757, 1 (2005)

    ADS  Google Scholar 

  3. PHOBOS Collaboration: B B Back et al, Nucl. Phys. A757, 28 (2005)

    ADS  Google Scholar 

  4. STAR Collaboration: J Adams et al, Nucl. Phys. A757, 102 (2005)

    ADS  Google Scholar 

  5. G Boyd et al, Phys. Rev. Lett. 75, 4169 (1995); Nucl. Phys. B469, 419 (1996)

    Article  ADS  Google Scholar 

  6. R V Gavai, S Gupta and S Mukherjee, Phys. Rev. D71, 074013 (2005)

  7. S Gupta, Phys. Lett. B597, 57 (2004)

    ADS  Google Scholar 

  8. S Gupta, Pramana — J. Phys. 61, 877 (2003)

    Article  ADS  Google Scholar 

  9. P Arnold and C Zhai, Phys. Rev. D50, 7603 (1994); ibid D51, 1906 (1995)

    ADS  Google Scholar 

  10. E Braaten and A Nieto, Phys. Rev. D53, 3421 (1996)

    ADS  Google Scholar 

  11. K Kajantie et al, Phys. Rev. Lett. 86, 10 (2001); J. High Energy Phys. 0304, 036 (2003)

    Article  ADS  Google Scholar 

  12. A Peshier, Nucl. Phys. A702, 128 (2002)

    ADS  Google Scholar 

  13. J O Andersen et al, Phys. Rev. D66, 085016 (2002)

  14. J-P Blaizot, E Iancu and A Rebhan, Phys. Rev. D63, 065003 (2001)

    Google Scholar 

  15. K Kajantie et al, Phys. Rev. Lett. 86, 10 (2001)

    Article  ADS  Google Scholar 

  16. A Dumitru, J Lenaghan and R D Pisarski, Phys. Rev. D71, 074004 (2005)

    Google Scholar 

  17. B Grossman et al, Nucl. Phys. B417, 289 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  18. K Kajantie et al, Phys. Rev. Lett. 79, 3130 (1997)

    Article  ADS  Google Scholar 

  19. S Datta and S Gupta, Nucl. Phys. B534, 392 (1998)

    Article  ADS  Google Scholar 

  20. M Laine and O Philipsen, Phys. Lett. B459, 259 (1999)

    Article  ADS  Google Scholar 

  21. S Datta and S Gupta, Phys. Rev. D67, 054503 (2003)

  22. A Hart, M Laine and O Philipsen, Nucl. Phys. B586, 443 (2000)

    Article  ADS  Google Scholar 

  23. QCD-TARO Collaboration: P de Forcrand et al, Phys. Rev. D63, 054501 (2001)

    Google Scholar 

  24. S S Gubser, I R Klebanov and A A Tseytlin, Nucl. Phys. B534, 202 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  25. I R Klebanov, hep-th/0009139

  26. P Kovtun, D T Son and A Starinets, J. High Energy Phys. 0310, 064 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. D Teaney, Phys. Rev. C68, 034913 (2003)

  28. A Nakamura and S Sakai, Phys. Rev. Lett. 94, 072305 (2005)

    Google Scholar 

  29. H B Meyer, Phys. Rev. D76, 101701 (2007); ibid. arXiv:0710.3717[hep-lat]

  30. J Engels et al, Nucl. Phys. B205, 545 (1982)

    Article  ADS  Google Scholar 

  31. Y Deng, Nucl. Phys. (Proc. Suppl.) B9, 334 (1989)

    Article  ADS  Google Scholar 

  32. J Engels, J Fingberg, F Karsch, D Miller and M Weber, Nucl. Phys. B252, 625 (1990)

    Google Scholar 

  33. W H Press et al, Numerical recipes (Cambridge University Press, Cambridge, 1986)

    Google Scholar 

  34. S Ejiri, Y Iwasaki and K Kanaya, Phys. Rev. D58, 094505 (1998)

  35. L Stodolsky, Phys. Rev. Lett. 75, 1044 (1995)

    Article  ADS  Google Scholar 

  36. R S Bhalerao, J P Blaizot, N Borghini and J Y Ollitrault, Phys. Lett. B627, 49 (2005)

    ADS  Google Scholar 

  37. We thank Igor Klebanov for pointing out that the factor x −3/2 in the right-hand side of eq. (1) appears in early literature as (2x)−3/2 due to a different normalization of g 2 N c

  38. See, for example, L D Landau and E M Lifschitz, Fluid mechanics (Reed Elsevier Plc, Oxford, 1998) p. 254

    Google Scholar 

  39. R V Gavai and A Gocksch, Phys. Rev. D33, 614 (1986)

    ADS  Google Scholar 

  40. See, for example, S Aoki et al, Nucl. Phys. (Proc. Suppl.) B106, 477 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  41. A Hasenfratz and P Hasenfratz, Nucl. Phys. B193, 210 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  42. F Karsch, Nucl. Phys. B205, 285 (1982)

    Article  ADS  Google Scholar 

  43. S Datta and R V Gavai, Phys. Rev. D60, 034505 (1999)

  44. S Gupta, Phys. Rev. D64, 034507 (2001)

  45. G P Lepage and P B Mackenzie, Phys. Rev. D48, 2250 (1993)

    ADS  Google Scholar 

  46. R G Edwards, U M Heller and T R Klassen, Nucl. Phys. B517, 377 (1998)

    Article  ADS  Google Scholar 

  47. U M Heller and F Karsch, Nucl. Phys. B251, 254 (1985)

    Article  ADS  Google Scholar 

  48. We thank Kari Rummukainen, Keijo Kajantie and Jürgen Engels for discussions on this point

  49. J Engels, F Karsch and T Scheideler, Nucl. Phys. B564, 303 (2000)

    Article  ADS  Google Scholar 

  50. S Datta and S Gupta, Phys. Lett. B471, 382 (2000)

    ADS  Google Scholar 

  51. O Kaczmarek et al, Phys. Rev. D62, 034021 (2001)

  52. K Kajantie et al, Phys. Rev. D67, 105008 (2003)

  53. L Lyons, Statistics for nuclear and particle physicists (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagato Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavai, R.V., Gupta, S. & Mukherjee, S. Lattice quantum chromodynamics equation of state: A better differential method. Pramana - J Phys 71, 487–508 (2008). https://doi.org/10.1007/s12043-008-0126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0126-9

Keywords

PACS Nos

Navigation