Skip to main content
Log in

Developments in lattice quantum chromodynamics for matter at high temperature and density

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A brief overview of the QCD phase diagram at nonzero temperature and density is provided. It is explained why standard lattice QCD techniques are not immediately applicable for its determination, due to the sign problem. A selection of recent lattice approaches that attempt to evade the sign problem are then discussed and classified according to the underlying principle: constrained simulations (density of states, histograms), holomorphicity (complex Langevin, Lefschetz thimbles), partial summations (clusters, subsets, bags) and change in integration order (strong coupling, dual formulations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. J B Kogut and M A Stephanov, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 21 (2004)

  2. K Yagi, T Hatsuda and Y Miake, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 23 (2005)

  3. Y Aoki, G Endrodi, Z Fodor, S D Katz and K K Szabo, Nature 443, 675 (2006) hep-lat/0611014 hep-lat/0611014

    Article  ADS  Google Scholar 

  4. S Borsanyi, G Endrodi, Z Fodor, A Jakovac, S D Katz, S Krieg, C Ratti and K K Szabo, J. High Energy Phys. 1011, 077 (2010) arXiv: 1007.2580 [hep-lat]

    Article  ADS  Google Scholar 

  5. A Bazavov, T Bhattacharya, M Cheng, C DeTar, H T Ding, S Gottlieb, R Gupta, P Hegde et al, Phys. Rev. D 85, 054503 (2012) arXiv: 1111.1710 [hep-lat]

    Article  ADS  Google Scholar 

  6. O Philipsen, Prog. Part. Nucl. Phys. 70, 55 (2013) arXiv: 1207.5999 [hep-lat]

    Article  ADS  Google Scholar 

  7. D E Kharzeev, K Landsteiner, A Schmitt and H -U Yee, Lect. Notes Phys. 871, 1 (2013) arXiv: 1211.6245 [hep-ph]

    Article  ADS  Google Scholar 

  8. M D’Elia, S Mukherjee and F Sanfilippo, Phys. Rev. D 82, 051501 (2010) arXiv:1005.5365 [hep-lat]

    Article  ADS  Google Scholar 

  9. G S Bali, F Bruckmann, G Endrodi, Z Fodor, S D Katz, S Krieg, A Schafer and K K Szabo, J. High Energy Phys. 1202, 044 (2012) arXiv: 1111.4956 [hep-lat]

  10. I Barbour, N -E Behilil, E Dagotto, F Karsch, A Moreo, M Stone and H W Wyld, Nucl. Phys. B 275, 296 (1986)

    Article  ADS  Google Scholar 

  11. P de Forcrand, PoS LAT 2009, 010 (2009) arXiv: http://arxiv.org/ abs/1005.0539 [hep-lat]

    Google Scholar 

  12. G Aarts, PoS LATTICE 2012, 017 (2012) arXiv: http://arxiv.org/ abs/1302.3028 [hep-lat]

    Google Scholar 

  13. www.bnl.gov/newsroom/news.php?a=21870

  14. M A Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004); Int. J. Mod. Phys. A 20, 4387 (2005), hep-ph/0402115

  15. M G Alford, A Schmitt, K Rajagopal and T Schäfer, Rev. Mod. Phys. 80, 1455 (2008) arXiv: 0709.4635 [hep-ph]

    Article  ADS  Google Scholar 

  16. L McLerran and R D Pisarski, Nucl. Phys. A 796, 83 (2007) arXiv: 0706.2191 [hep-ph]

    Article  ADS  Google Scholar 

  17. K Fukushima, Phys. Lett. B 591, 277 (2004) hep-ph/0310121

    Article  ADS  Google Scholar 

  18. C Ratti, M A Thaler and W Weise, Phys. Rev. D 73, 014019 (2006) hep-ph/0506234

    Article  ADS  Google Scholar 

  19. T K Herbst, J M Pawlowski and B -J Schaefer, Phys. Lett. B 696, 58 (2011) arXiv: 1008.0081 [hep-ph]

    Article  ADS  Google Scholar 

  20. J Braun, L M Haas, F Marhauser and J M Pawlowski, Phys. Rev. Lett. 106, 022002 (2011) arXiv: 0908.0008 [hep-ph]

    Article  ADS  Google Scholar 

  21. C S Fischer and J Luecker, Phys. Lett. B 718, 1036 (2013) arXiv: 1206.5191 [hep-ph]

    Article  ADS  Google Scholar 

  22. C S Fischer, L Fister, J Luecker and J M Pawlowski, arXiv: 1306.6022 [hep-ph]

  23. A Vuorinen, Phys. Rev. D 68, 054017 (2003) hep-ph/0305183

    Article  ADS  Google Scholar 

  24. A Kurkela, P Romatschke and A Vuorinen, Phys. Rev. D 81, 105021 (2010) arXiv: 0912.1856 [hep-ph]

    Article  ADS  Google Scholar 

  25. J O Andersen, L E Leganger, M Strickland and N Su, J. High Energy Phys. 1108, 053 (2011) arXiv: 1103.2528[hep-ph]

    Article  ADS  Google Scholar 

  26. M -P Lombardo, Nucl. Phys. Proc. Suppl. 83, 375 (2000) hep-lat/9908006

    ADS  Google Scholar 

  27. S Gupta, PoS LATTICE 2010, 007 (2010) arXiv: http://arxiv.org/ abs/1101.0109 [hep-lat]

    Google Scholar 

  28. S Datta, R V Gavai and S Gupta, Nucl. Phys. A 904–905, 883c (2013) arXiv: 1210.6784 [hep-lat]

    Article  Google Scholar 

  29. P de Forcrand and O Philipsen, J. High Energy Phys. 0701, 077 (2007) hep-lat/0607017

    Article  ADS  MathSciNet  Google Scholar 

  30. G Endrodi, Z Fodor, S D Katz and K K Szabo, J. High Energy Phys. 1104, 001 (2011) arXiv: 1102.1356 [hep-lat]

    Article  ADS  Google Scholar 

  31. M A Stephanov, Phys. Rev. Lett. 76, 4472 (1996) http://arxiv.org/ abs/hep-lat/9604003

    Article  ADS  Google Scholar 

  32. D T Son and M A Stephanov, Phys. Rev. Lett. 86, 592 (2001) hep-ph/0005225

    Article  ADS  Google Scholar 

  33. J C Osborn, K Splittorff and J J M Verbaarschot, Phys. Rev. Lett. 94, 202001 (2005) hep-th/0501210

    Article  ADS  Google Scholar 

  34. K Splittorff and J J M Verbaarschot, Phys. Rev. D 75, 116003 (2007) hep-lat/0702011 [hep-lat]

    Article  ADS  Google Scholar 

  35. T D Cohen, Phys. Rev. Lett. 91, 222001 (2003) hep-ph/0307089

    Article  ADS  Google Scholar 

  36. K Splittorff and J J M Verbaarschot, Phys. Rev. Lett. 98, 031601 (2007) hep-lat/0609076

    Article  ADS  Google Scholar 

  37. K Splittorff and J J M Verbaarschot, Phys. Rev. D 77, 014514 (2008) arXiv: 0709.2218 [hep-lat]

    Article  ADS  Google Scholar 

  38. I M Barbour, S E Morrison, E G Klepfish, J B Kogut and M -P Lombardo, Nucl. Phys. Proc. Suppl. 60A, 220 (1998) hep-lat/9705042

    Article  ADS  Google Scholar 

  39. Z Fodor and S D Katz, Phys. Lett. B 534, 87 (2002) hep-lat/0104001

    Article  ADS  MATH  Google Scholar 

  40. K Splittorff, PoS LAT 2006, 023 (2006) hep-lat/0610072

    Google Scholar 

  41. Z Fodor, S D Katz and C Schmidt, J. High Energy Phys. 0703, 121 (2007) hep-lat/0701022

    Article  ADS  MathSciNet  Google Scholar 

  42. K N Anagnostopoulos, T Azuma and J Nishimura, Phys. Rev. D 83, 054504 (2011) arXiv:1009.4504 [cond-mat.stat-mech]

    Article  ADS  Google Scholar 

  43. S Ejiri, Eur. Phys. J. A 49, 86 (2013) arXiv: 1306.0295 [hep-lat]

    Article  ADS  Google Scholar 

  44. S Ejiri, Phys. Rev. D 77, 014508 (2008) arXiv: 0706.3549 [hep-lat]

    Article  ADS  Google Scholar 

  45. H Saito, S Ejiri, S Aoki, K Kanaya, Y Nakagawa, H Ohno, K Okuno and T Umeda, Phys. Rev. D 89, 034507 (2014) arXiv:1309.2445 [hep-lat]

    Article  ADS  Google Scholar 

  46. J Greensite, J C Myers and K Splittorff, arXiv:1308.6712 [hep-lat]

  47. F Wang and D P Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  48. K Langfeld, B Lucini and A Rago, Phys. Rev. Lett. 109, 111601 (2012) arXiv:1204.3243 [hep-lat]

    Article  ADS  Google Scholar 

  49. K Langfeld and J M Pawlowski, Phys. Rev. D 88, 071502 (R) (2013) arXiv:1307.0455 [hep-lat]

  50. G Aarts and I -O Stamatescu, J. High Energy Phys. 0809, 018 (2008) arXiv:0807.1597 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  51. G Parisi, Phys. Lett. B 131, 393 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  52. J R Klauder, Recent developments in high-energy physics edited by H Mitter and C B Lang (Springer-Verlag, Wien, 1983) p. 351; J Phys A: Math. Gen. 16, L317 (1983); Phys. Rev. A 29, 2036 (1984)

  53. AuroraScience Collaboration: M Cristoforetti et al, Phys. Rev. D 86, 074506 (2012), arXiv:1205.3996 [hep-lat]

  54. E Witten, arXiv:1001.2933 [hep-th]

  55. A Mukherjee, M Cristoforetti and L Scorzato, Phys. Rev. D 88, 051502 (2013) arXiv:1308.0233 [physics.comp-ph]

  56. M Cristoforetti, F Di Renzo, A Mukherjee and L Scorzato, Phys. Rev. D 88, 051501 (2013) arXiv:1303.7204 [hep-lat]

    Article  ADS  Google Scholar 

  57. H Fujii, D Honda, M Kato, Y Kikukawa, S Komatsu and T Sano, J. High Energy Phys. 1310, 147 (2013) arXiv:1309.4371 [hep-lat]

    Article  ADS  Google Scholar 

  58. G Aarts, Phys. Rev. Lett. 102, 131601 (2009) arXiv:0810.2089 [hep-lat]

    Article  ADS  Google Scholar 

  59. C Gattringer and T Kloiber, Nucl. Phys. B 869, 56 (2013) arXiv:1206.2954 [hep-lat]

    Article  ADS  MATH  Google Scholar 

  60. J Ambjorn, M Flensburg and C Peterson, Nucl. Phys. B 275, 375 (1986)

    Article  ADS  Google Scholar 

  61. G Aarts and F A James, J. High Energy Phys. 1008, 020 (2010) arXiv:1005.3468 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  62. G Aarts, E Seiler and I -O Stamatescu, Phys. Rev. D 81, 054508 (2010) arXiv:0912.3360 [hep-lat]

    Article  ADS  Google Scholar 

  63. G Aarts, F A James, E Seiler and I -O Stamatescu, Eur. Phys. J. C 71, 1756 (2011), arXiv:1101.3270 [hep-lat]

    Article  ADS  Google Scholar 

  64. E Seiler, D Sexty and I -O Stamatescu, Phys. Lett. B 723, 213 (2013) arXiv:1211.3709 [hep-lat]

    Article  ADS  Google Scholar 

  65. G Aarts, L Bongiovanni, E Seiler, D Sexty and I -O Stamatescu, Eur. Phys. J. A 49, 89 (2013) arXiv:1303.6425 [hep-lat]

    Article  ADS  Google Scholar 

  66. D Sexty, arXiv:1307.7748 [hep-lat]

  67. L Bongiovanni, G Aarts, E Seiler, D Sexty and I -O Stamatescu, arXiv:1311.1056 [hep-lat]

  68. A Mollgaard and K Splittorff, arXiv:1309.4335 [hep-lat]

  69. G Aarts, Phys. Rev. D 88, 094501 (2013) arXiv:abs/1308.4811 [hep-lat]

    Article  ADS  Google Scholar 

  70. G Aarts, P Giudice and E Seiler, Ann. Phys. 337, 238 (2013) arXiv:1306.3075 [hep-lat]

    Article  ADS  Google Scholar 

  71. S Chandrasekharan and U -J Wiese, Phys. Rev. Lett. 83, 3116 (1999) cond-mat/9902128

    Article  ADS  Google Scholar 

  72. M G Alford, S Chandrasekharan, J Cox and U J Wiese, Nucl. Phys. B 602, 61 (2001), hep-lat/0101012

    Article  ADS  MATH  Google Scholar 

  73. S Kim, P de Forcrand, S Kratochvila and T Takaishi, PoS LAT 2005, 166 (2006) hep-lat/0510069 hep-lat/0510069

    Google Scholar 

  74. G Aarts, O Kaczmarek, F Karsch and I -O Stamatescu, Nucl. Phys. Proc. Suppl. 106, 456 (2002) hep-lat/0110145

    Article  ADS  Google Scholar 

  75. J Bloch, F Bruckmann and T Wettig, J. High Energy Phys. 1310, 140 (2013) arXiv:1307.1416 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  76. J Bloch, Phys. Rev. Lett. 107, 132002 (2011) arXiv:1103.3467 [hep-lat]

    Article  ADS  Google Scholar 

  77. J Bloch, F Bruckmann, M Kieburg, K Splittorff and J J M Verbaarschot, Phys. Rev. D 87(3), 034510 (2013) arXiv:1211.3990 [hep-lat]

    Article  ADS  Google Scholar 

  78. S Chandrasekharan, Phys. Rev. D 82, 025007 (2010) arXiv:0910.5736 [hep-lat]

    Article  ADS  Google Scholar 

  79. S Chandrasekharan and A Li, Phys. Rev. Lett. 108, 140404 (2012) arXiv:1111.7204 [hep-lat]

    Article  ADS  Google Scholar 

  80. S Chandrasekharan and A Li, Phys. Rev. D 85, 091502 (2012) arXiv:1202.6572 [hep-lat]

    Article  ADS  Google Scholar 

  81. S Chandrasekharan, Eur. Phys. J. A 49, 90 (2013) arXiv:1304.4900 [hep-lat]

    Article  ADS  Google Scholar 

  82. F Karsch and K H Mutter, Nucl. Phys. B 313, 541 (1989)

    Article  ADS  Google Scholar 

  83. N Prokof’ev and B Svistunov, Phys. Rev. Lett. 87, 160601 (2001)

    Article  ADS  Google Scholar 

  84. P de Forcrand and M Fromm, Phys. Rev. Lett. 104, 112005 (2010) arXiv:0907.1915 [hep-lat]

    Article  ADS  Google Scholar 

  85. C Gattringer, Nucl. Phys. B 850, 242 (2011) arXiv:1104.2503 [hep-lat]

    Article  ADS  MATH  Google Scholar 

  86. Y D Mercado, C Gattringer and A Schmidt, Phys. Rev. Lett. 111, 141601 (2013) arXiv:1307.6120 [hep-lat]

    Article  ADS  Google Scholar 

  87. C Gattringer, PoS LATTICE 2013, 002 (2013)

    Google Scholar 

  88. M Fromm, J Langelage, S Lottini and O Philipsen, J. High Energy Phys. 1201, 042 (2012) arXiv:1111.4953 [hep-lat]

    Article  ADS  Google Scholar 

  89. Y D Mercado and C Gattringer, Nucl. Phys. B 862, 737 (2012) arXiv:1204.6074 [hep-lat]

    Article  ADS  MATH  Google Scholar 

  90. F Karsch and H W Wyld, Phys. Rev. Lett. 55, 2242 (1985)

    Article  ADS  Google Scholar 

  91. G Aarts and F A James, J. High Energy Phys. 1201, 118 (2012) arXiv:1112.4655 [hep-lat]

    Article  ADS  Google Scholar 

  92. M Fromm, J Langelage, S Lottini, M Neuman and O Philipsen, Phys. Rev. Lett. 110, 122001 (2013) arXiv:1207.3005 [hep-lat]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author takes pleasure in thanking his collaborators, especially Erhard Seiler, Dénes Sexty, Nucu Stamatescu and Lorenzo Bongiovanni. The author also thanks Kim Splittorff for a careful reading of the manuscript, and Sourendu Gupta for the opportunity to present this overview and kind hospitality at TIFR, Mumbai. This work is supported by STFC, theRoyal Society, the Wolfson Trust and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Aarts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aarts, G. Developments in lattice quantum chromodynamics for matter at high temperature and density. Pramana - J Phys 84, 787–799 (2015). https://doi.org/10.1007/s12043-015-0981-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-0981-0

Keywords

PACS Nos

Navigation