Skip to main content
Log in

Numerical calculations of potential distribution in non-ideal quadrupole trap and simulations of anharmonic oscillations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A quadrupole ion trap consisting of electrode structures symmetric about z-axis is an important tool for conducting several precision experiments. In practice the field inside the trap does not remain purely quadrupolar, and can be calculated using numerical methods. We have used boundary element method to calculate the potential inside the truncated as well as symmetrically misaligned quadrupolar ion trap. The calculated potential values are fitted to multipole expansion and the weights of multipole moments have been evaluated by minimizing the least square deviation. The higher-order multipole contribution in the fabricated hyperbolic electrodes due to truncation and machining imperfections is discussed. Non-linear effects arising due to the superposition of octupole moment manifest as anharmonic oscillations of trapped ions in the non-ideal Paul trap. Theoretical simulations of non-linear effects have been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R C Thompson, Meas. Sci. Technol. 1, 93 (1990)

    Article  ADS  Google Scholar 

  2. G Savard and G Werth, Annu. Rev. Nucl. Part. Sci. 50, 119 (2000)

    Article  ADS  Google Scholar 

  3. G Werth, Phys. Scr. 36, 149 (1987)

    Article  ADS  Google Scholar 

  4. L S Brown and G Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  5. G Gabrielse, Phys. Rev. A27, 2277 (1983)

    ADS  Google Scholar 

  6. M D N Lunney, J P Webb and R B Moore, J. Appl. Phys. 65, 2883 (1989)

    Article  ADS  Google Scholar 

  7. E C Beaty, Phys. Rev. A33, 3645 (1986)

    ADS  Google Scholar 

  8. J Franzen, Int. J. Mass Spectrom. Ion Process. 106, 63 (1991)

    Article  Google Scholar 

  9. Y Wang and J Franzen, Int. J. Mass Spectrom. Ion Process. 112, 167 (1992)

    Article  Google Scholar 

  10. Y Wang, J Franzen and K P Wanczek, Int. J. Mass Spectrom. Ion Process. 124, 125 (1993)

    Article  Google Scholar 

  11. Y Wang and J Franzen, Int. J. Mass Spectrom. Ion Process. 132, 155 (1994)

    Article  Google Scholar 

  12. J Franzen, Int. J. Mass Spectrom. Ion Process. 125, 165 (1993)

    Article  Google Scholar 

  13. X Luo, X Zhu, K Gao, J Li, M Yan, L Shi and J Xu, Appl. Phys. B62, 421 (1996)

    ADS  Google Scholar 

  14. A Kajita, M Kimura, S Ohtani, H Tawara and Y Saito, J. Phys. Soc. Jpn. 59, 1127 (1990)

    Article  ADS  Google Scholar 

  15. R Alhiet, C Hennig, R Morgenstern, F Vedel and G Werth, Appl. Phys. B61, 277 (1995)

    Article  ADS  Google Scholar 

  16. M Vedel, J Rocher, M Knoop and F Vedel, Appl. Phys. B66, 191 (1998)

    Article  ADS  Google Scholar 

  17. R Alhiet, S Kleineidam, F Vedel, M Vedel and G Werth, Int. J. Mass Spectrom. Ion Process. 154, 155 (1996)

    Article  Google Scholar 

  18. P Paasche, C Angelescu, S Ananthmurthy, D Biswas, T Valenzuela and G Werth, Euro. Phys. J. D22, 183 (2003)

    ADS  Google Scholar 

  19. T Gudjons, P Seibert and G Werth, Appl. Phys. B65, 57 (1997)

    Article  ADS  Google Scholar 

  20. A Drakoudis, M Sollner and G Werth, Int. J. Mass Spectrom. 252, 61 (2006)

    Article  Google Scholar 

  21. S Sevugrajan and A G Menon, Int. J. Mass Spectrom. 189, 53 (1999)

    Article  Google Scholar 

  22. A Renau, F H Read and J N H Brunt, J. Phys. E15, 347 (1982)

    ADS  Google Scholar 

  23. L D Landau and E M Lifshitz, Mechanics (Pergamon Press, Oxford, UK, 1969)

    Google Scholar 

  24. R F Wuerker, H Shelton and R V Langmuir, J. Appl. Phys. 30, 342 (1959)

    Article  ADS  Google Scholar 

  25. M N Gaboriaud, M Desaintfuscien and F G Major, Int. J. Mass Spectrom. Ion Phys. 41, 109 (1981)

    Article  Google Scholar 

  26. Y A Mitropol’skii, Problems of asymptotic theory of nonstationary vibrations (Daniel Davey, New York, 1965)

    Google Scholar 

  27. M A Makarov, Anal. Chem. 68, 4257 (1996)

    Article  Google Scholar 

  28. H A V Hoof, J. Phys. E13, 1081 (1980)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpa M. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Rao, P.M. Numerical calculations of potential distribution in non-ideal quadrupole trap and simulations of anharmonic oscillations. Pramana - J Phys 70, 457–470 (2008). https://doi.org/10.1007/s12043-008-0061-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0061-9

Keywords

PACS Nos

Navigation