Skip to main content
Log in

Nonlinear Effects in Paul Traps Operated in the Second Stability Region: Analytical Analysis and Numerical Verification

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Paul trap working in the second stability region has long been recognized as a possible approach for achieving high-resolution mass spectrometry (MS), which however is still far away from the experimental implementations because of the narrow working area and inefficient ion trapping. Full understanding of the ion motional behavior is helpful for solving the problem. In this article, the ion motion in a superimposed octopole field, which was characterized by the nonlinear Mathieu equation, was solved analytically using Poincare-Lighthill-Kuo (PLK) method. This method equivalently described the nonlinear disturbance by an effective quadrupole field with perturbed Mathieu parameters, a u and q u , which would bring huge convenience in the studies of nonlinear ion dynamics and was, therefore, used for rapid evaluation of the nonlinear effects of ion motion. Fourth-order Runge-Kutta method (4th R-K) indicated the error of PLK for characterizing the frequency shift of ion motion was within 15%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Paul, W., Steinwedel, H.: A new mass spectrometer without a magnetic field. Z. Naturforsch. 8A, 448–450 (1953)

    CAS  Google Scholar 

  2. March, R.E.: An introduction to quadrupole ion trap mass spectrometry. J. Mass Spectrom. 32, 351–369 (1997)

    Article  CAS  Google Scholar 

  3. March, R.E.: Quadrupole ion trap mass spectrometry: theory, simulation, recent developments, and applications. Rapid Commun. Mass Spectrom. 12, 1543–1554 (1998)

    Article  CAS  Google Scholar 

  4. Dawson, P.H.: Quadrupole mass analyzers: performance, design, and some recent applications. Mass Spectrom. Rev. 5, 1–37 (1986)

    Article  CAS  Google Scholar 

  5. Dawson, P.H.: Quadrupole mass spectrometry and its applications. Elsevier, Amsterdam (1976)

    Google Scholar 

  6. McLafferty, F.: Tandem mass spectrometry. Science 214, 280–287 (1981)

    Article  CAS  Google Scholar 

  7. McLafferty, F.W.: Tandem mass spectrometry. John Wiley and Sons Inc., New York (1983)

    Google Scholar 

  8. Hoffmann, E.D., Stroobant, V.: Mass spectrometry: principles and applications. John Wiley and Sons, Chichester (2007)

    Google Scholar 

  9. Schwartz, J.C., Senko, M.W., Syka, J.E.P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13, 659–669 (2002)

    Article  CAS  Google Scholar 

  10. Hager, J.W.: A new linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 16, 512–526 (2002)

    Article  CAS  Google Scholar 

  11. Wells, J.M., Badman, E.R., Cooks, R.G.: A quadrupole ion trap with cylindrical geometry operated in the mass-selective instability mode. Anal. Chem. 70, 438–444 (1998)

    Article  CAS  Google Scholar 

  12. Ouyang, Z., Wu, G., Song, Y., Li, H., Plass, W.R., Cooks, R.G.: Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal. Chem. 76, 4595–4605 (2004)

    Article  CAS  Google Scholar 

  13. Lammert, S.A., Plass, W.R., Thompson, C.V., Wise, M.B.: Design, optimization, and initial performance of a toroidal rf ion trap mass spectrometer. Int. J. Mass Spectrom. 212, 25–40 (2001)

    Article  CAS  Google Scholar 

  14. Austin, D.E., Wang, M., Tolley, S.E., Maas, J.D., Hawkins, A.R., Rockwood, A.L., Tolley, H.D., Lee, E.D., Lee, M.L.: Halo ion trap mass spectrometer. Anal. Chem. 79, 2927–2932 (2007)

    Article  CAS  Google Scholar 

  15. Ouyang, Z., Cooks, R.G.: Miniature mass spectrometers. Annu. Rev. Anal. Chem. 2, 187–214 (2009)

    Article  CAS  Google Scholar 

  16. Noshad, H., Doroudi, A.: Computation of five stability regions in a quadrupole ion trap using the fifth-order Runge-Kutta method. Int. J. Mass Spectrom. 281, 79–81 (2009)

    Article  CAS  Google Scholar 

  17. Ziaeian, I., Noshad, H.: Theoretical study of the effect of damping force on higher stability regions in a Paul trap. Int. J. Mass Spectrom. 289, 1–5 (2010)

    Article  CAS  Google Scholar 

  18. Noshad, H., Kariman, B.-S.: Numerical investigation of stability regions in a cylindrical ion trap. Int. J. Mass Spectrom. 308, 109–113 (2011)

    Article  CAS  Google Scholar 

  19. Brabeck, G.F., Reilly, P.T.A.: Mapping ion stability in digitally driven ion traps and guides. Int. J. Mass Spectrom. 364, 1–8 (2014)

    Article  CAS  Google Scholar 

  20. Konenkov, N.V., Sudakov, M., Douglas, D.J.: Matrix methods for the calculation of stability diagrams in quadrupole mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 597–613 (2002)

    Article  CAS  Google Scholar 

  21. Titov, V.V.: Detailed study of the quadrupole mass analyzer operating within the first, second, and third (intermediate) stability regions. II. Transmission and resolution. J. Am. Soc. Mass Spectrom. 9, 70–87 (1998)

    Article  CAS  Google Scholar 

  22. Dawson, P.H., Bingqi, Y.: The second stability region of the quadrupole mass filter. II. Experimental results. Int. J. Mass Spectrom. Ion Process. 56, 41–50 (1984)

    Article  CAS  Google Scholar 

  23. Du, Z., Douglas, D.J., Konenkov, N.: Elemental analysis with quadrupole mass filters operated in higher stability regions. J. Anal. At. Spectrom. 14, 1111–1119 (1999)

    Article  CAS  Google Scholar 

  24. Douglas, D.J.: Linear quadrupoles in mass spectrometry. Mass Spectrom. Rev. 28, 937–960 (2009)

    Article  CAS  Google Scholar 

  25. Schwartz, J.C., Syka, J.E.P., Jardine, I.: High resolution on a quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2, 198–204 (1991)

    Article  CAS  Google Scholar 

  26. Londry, F.A., Wells, G.J., March, R.E.: Enhanced mass resolution in a quadrupole ion trap. Rapid Commun. Mass Spectrom. 7, 43–45 (1993)

    Article  CAS  Google Scholar 

  27. Wineland, D.J., Itano, W.M., Van Dyck Jr., R.S., David, B., Benjamin, B.: High-resolution spectroscopy of stored ions. Adv. At. Mol. Phys. 19, 135–186 (1983)

    Article  CAS  Google Scholar 

  28. Jiebing, W., Xiwen, Z.: Phase space analysis of the ion cloud in the second stability region of the Paul trap. Int. J. Mass Spectrom. Ion Process. 124, 89–97 (1993)

    Article  CAS  Google Scholar 

  29. Zhu, X., Qi, D.: Characteristics of trapped ions in the second stability region of a Paul trap. J. Mod. Opt. 39, 291–303 (1992)

    Article  Google Scholar 

  30. Beaty, E.C.: Calculated electrostatic properties of ion traps. Phys. Rev. A 33, 3645–3656 (1986)

    Article  Google Scholar 

  31. Xu, W., Chappell, W.J., Cooks, R.G., Ouyang, Z.: Characterization of electrode surface roughness and its impact on ion trap mass analysis. J. Mass Spectrom. 44, 353–360 (2009)

    Article  CAS  Google Scholar 

  32. Wells, J.M., Plass, W.R., Patterson, G.E., Ouyang, Z., Badman, E.R., Cooks, R.G.: Chemical mass shifts in ion trap mass spectrometry: experiments and simulations. Anal. Chem. 71, 3405–3415 (1999)

    Article  CAS  Google Scholar 

  33. Li, H., Plass, W.R., Patterson, G.E., Cooks, R.G.: Chemical mass shifts in resonance ejection experiments in the quadrupole ion trap. J. Mass Spectrom. 37, 1051–1058 (2002)

    Article  CAS  Google Scholar 

  34. Franzen, J.: The non-linear ion trap. Part 4. Mass selective instability scan with multipole superposition. Int. J. Mass Spectrom. Ion Process. 125, 165–170 (1993)

    Article  CAS  Google Scholar 

  35. Dawson, P.H., Whetten, N.R.: Non-linear resonances in quadrupole mass spectrometers due to imperfect fields. I. The quadrupole ion trap. Int. J. Mass Spectrom. Ion Phys. 2, 45–59 (1969)

    Article  CAS  Google Scholar 

  36. Eades, D.M., Johnson, J.V., Yost, R.A.: Nonlinear resonance effects during ion storage in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 4, 917–929 (1993)

    Article  CAS  Google Scholar 

  37. March, R.E., Todd, J.F.J.: Practical aspects of ion trap mass spectrometry. Vol. I Chap. 3. Fundamentals of ion trap mass spectrometry. CRC Press, New York (1995)

    Google Scholar 

  38. Makarov, A., Denisov, E., Lange, O.: Performance evaluation of a high-field Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20, 1391–1396 (2009)

    Article  CAS  Google Scholar 

  39. Guna, M., Biesenthal, T.A.: Performance enhancements of mass selective axial ejection from a linear ion trap. J. Am. Soc. Mass Spectrom. 20, 1132–1140 (2009)

    Article  CAS  Google Scholar 

  40. Zhou, X., Zhu, Z., Xiong, C., Chen, R., Xu, W., Qiao, H., Peng, W.-P., Nie, Z., Chen, Y.: Characteristics of stability boundary and frequency in nonlinear ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 21, 1588–1595 (2010)

    Article  CAS  Google Scholar 

  41. Zhou, X., Xiong, C., Xu, G., Liu, H., Tang, Y., Zhu, Z., Chen, R., Qiao, H., Tseng, Y.-H., Peng, W.-P., Nie, Z., Chen, Y.: Potential distribution and transmission characteristics in a curved quadrupole ion guide. J. Am. Soc. Mass Spectrom. 22, 386–398 (2011)

    Article  CAS  Google Scholar 

  42. Zhou, X., Xiong, C., Zhang, S., Zhang, N., Nie, Z.: Study of nonlinear resonance effect in Paul trap. J. Am. Soc. Mass Spectrom. 24, 794–800 (2013)

    Article  CAS  Google Scholar 

  43. Sevugarajan, S., Menon, A.G.: Frequency perturbation in nonlinear Paul traps: a simulation study of the effect of geometric aberration, space charge, dipolar excitation, and damping on ion axial secular frequency. Int. J. Mass Spectrom. 197, 263–278 (2000)

    Article  CAS  Google Scholar 

  44. Sevugarajan, S., Menon, A.G.: A simulation study of coupled secular oscillations in nonlinear Paul trap mass spectrometers. Int. J. Mass Spectrom. 209, 209–226 (2001)

    Article  CAS  Google Scholar 

  45. Sevugarajan, S., Menon, A.G.: Field imperfection induced axial secular frequency shifts in nonlinear ion traps. Int. J. Mass Spectrom. 189, 53–61 (1999)

    Article  CAS  Google Scholar 

  46. Doroudi, A.: Comparison of calculated axial secular frequencies in nonlinear ion trap by homotopy method with the exact results and the results of Lindstedt-Poincare approximation. Int. J. Mass Spectrom. 296, 43–46 (2010)

    Article  CAS  Google Scholar 

  47. Doroudi, A., Asl, A.R.: Calculation of secular axial frequencies in a nonlinear ion trap with hexapole, octopole and decapole superpositions by a modified Lindstedt-Poincare method. Int. J. Mass Spectrom. 309, 104–108 (2012)

    CAS  Google Scholar 

  48. Wang, Y., Huang, Z., Jiang, Y., Xiong, X., Deng, Y., Fang, X., Xu, W.: The coupling effects of hexapole and octopole fields in quadrupole ion traps: a theoretical study. J. Mass Spectrom. 48, 937–944 (2013)

    Article  Google Scholar 

  49. Guo, D., Wang, Y., Xiong, X., Zhang, H., Zhang, X., Yuan, T., Fang, X., Xu, W.: Space charge induced nonlinear effects in quadrupole ion traps. J. Am. Soc. Mass Spectrom. 25, 498–508 (2014)

    Article  CAS  Google Scholar 

  50. Makarov, A.A.: Resonance ejection from the Paul trap: a theoretical treatment incorporating a weak octapole field. Anal. Chem. 68, 4257–4263 (1996)

    Article  CAS  Google Scholar 

  51. Doroudi, A.: Calculation of coupled secular oscillation frequencies and axial secular frequency in a nonlinear ion trap by a homotopy method. Phys. Rev. E. 80, 056603 (2009)

    Article  Google Scholar 

  52. Doroudi, A.: A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap. Eur. J. Mass Spectrom. 18, 37–42 (2012)

    Article  CAS  Google Scholar 

  53. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in Fortran 77, the art of scientific computing. Vol. 1 of fortran numerical recipes. Press Syndicate of the University of Cambridge, New York (1992)

    Google Scholar 

  54. Zhao, X., Granot, O., Douglas, D.J.: Quadrupole excitation of ions in linear quadrupole ion traps with added octopole fields. J. Am. Soc. Mass Spectrom. 19, 510–519 (2008)

    Article  CAS  Google Scholar 

  55. Zhao, X., Douglas, D.J.: Dipole excitation of ions in linear radio frequency quadrupole ion traps with added multipole fields. Int. J. Mass Spectrom. 275, 91–103 (2008)

    Article  CAS  Google Scholar 

  56. Dehmelt, H.G., Bates, D.R., Immanuel, E.: Radiofrequency spectroscopy of stored ions I: storage. Adv. At. Mol. Phys. 3, 53–72 (1968)

    Article  Google Scholar 

  57. Bonner, R.F., Hamilton, G.F., March, R.E.: Calculation of the phase-space parameters for the study of quadrupole devices. Int. J. Mass Spectrom. Ion Phys. 30, 365–371 (1979)

    Article  Google Scholar 

  58. Todd, J.F.J., Freer, D.A., Waldren, R.M.: The quadrupole ion store (QUISTOR). Part XI. The model of ion motion in a pseudo-potential well: an appraisal in terms of phase-space dynamics. Int. J. Mass Spectrom. Ion Phys. 36, 185–203 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Sciences Foundation of China (grants 21175139, 21205123, 21305144, 21321003, and 21127901), and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongxiu Nie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Zhou, X., Zhang, N. et al. Nonlinear Effects in Paul Traps Operated in the Second Stability Region: Analytical Analysis and Numerical Verification. J. Am. Soc. Mass Spectrom. 25, 1882–1889 (2014). https://doi.org/10.1007/s13361-014-0979-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0979-8

Key words

Navigation