Skip to main content
Log in

Metal-insulator crossover in high T c cuprates: A gauge field approach

  • Superconductivity
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A metal-insulator crossover appears in the experimental data for in-plane resistivity of underdoped cuprates and a range of superconducting cuprates in the presence of a strong magnetic field suppressing superconductivity. We propose an explanation for this phenomenon based on a gauge field theory approach to the t-J model. In this approach, based on a formal spin-charge separation, the low energy effective action describes gapful spinons (with a theoretically derived doping dependence of the gap m 2s δ¦ ln δ¦) and holons with finite Fermi surface (ɛF ∼ ) interacting via a gauge field whose basic effect on the spinons is to bind them into overdamped spin waves, shifting their gap by a damping term linear in T, which causes the metal-insulator crossover. The presence of a magnetic field perpendicular to the plane acts by increasing the damping, in turn producing a big positive transverse in-plane magnetoresistance at low T, as experimentally observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Takagi et al, Phys. Rev. Lett. 69, 2975 (1992)

    Article  ADS  Google Scholar 

  2. B Wuyts et al, Phys. Rev. B53, 9418 (1996)

    ADS  Google Scholar 

  3. B Keimer et al, Phys. Rev. B46, 14034 (1992)

    ADS  Google Scholar 

  4. B Wuyts et al, Phys. Rev. B53, 9418 (1996)

    ADS  Google Scholar 

  5. T Kimura et al, Phys. Rev. B53, 8733 (1996)

    ADS  Google Scholar 

  6. Y Abe et al, Phys. Rev. B59, 14753 (1999)

    ADS  Google Scholar 

  7. A Lacerda et al, Phys. Rev. B49, 9097 (1994)

    ADS  Google Scholar 

  8. P Fournier et al, Phys. Rev. Lett. 81, 4720 (1998)

    Article  ADS  Google Scholar 

  9. S Ono et al, Phys. Rev. Lett. 85, 638 (2000)

    Article  ADS  Google Scholar 

  10. K Segasawa and Y Ando, Phys. Rev. B59, R3948 (1999)

  11. Y Ando et al, Phys. Rev. Lett. 75, 4662 (1995)

    Article  ADS  Google Scholar 

  12. G S Boebinger et al, Phys. Rev. Lett. 77, 5417 (1996)

    Article  ADS  Google Scholar 

  13. Y Ando et al, J. Low Temp. Phys. 105, 867 (1996)

    Article  Google Scholar 

  14. L Ioffe and A Larkin, Phys. Rev. B39, 8988 (1989)

    ADS  Google Scholar 

  15. J Fröhlich et al, Nucl. Phys. B374, 511 (1992)

    Article  ADS  Google Scholar 

  16. J Fröhlich and P A Marchetti, Phys. Rev. B46, 6535 (1992)

    ADS  Google Scholar 

  17. P A Marchetti, Z B Su and L Yu, Phys. Rev. B58, 5808 (1998)

    ADS  Google Scholar 

  18. P A Lee and N Nagaosa, Phys. Rev. Lett. 65, 2450 (1990); Phys. Rev. B46, 5621 (1992)

    Article  Google Scholar 

  19. L B Ioffe and P B Wiegman, Phys. Rev. Lett. 65, 653 (1990)

    Article  ADS  Google Scholar 

  20. P A Marchetti et al, J. Phys. Condens. Matter 12, L329 (2000)

  21. P A Marchetti, Z B Su, L Yu, Phys. Rev. Lett. 86, 3831 (2001)

    Article  ADS  Google Scholar 

  22. L Ioffe and G Kotliar, Phys. Rev. B42, 10348 (1990)

    ADS  Google Scholar 

  23. L Ioffe and P Wiegmann, Phys. Rev. B45, 519 (1992)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchetti, P., Su, Z. & Yu, L. Metal-insulator crossover in high T c cuprates: A gauge field approach. Pramana - J Phys 58, 803–808 (2002). https://doi.org/10.1007/s12043-002-0175-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-002-0175-4

Keywords

PACS Nos

Navigation