Skip to main content
Log in

Understanding the Concept of Speed Breeding in Crop Improvement: Opportunities and Challenges Towards Global Food Security

  • Review
  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Considering fast-changing environment, emerging pathogens, and the imminent need to feed a global population that is predicted to increase to 9–10 billion people by the year 2050, plant breeders are faced with the challenge of exploring more efficient crop improvement strategies. The urgency to enhance crops under these conditions has become a paramount concern for scientists worldwide, as current crop enhancement projects progress at a pace insufficient to meet the growing food demand. Traditional breeding methods, which often take over 10 years to develop high-performing cultivars with desired traits, are proving to be inadequate. However, a new approach known as Speed breeding presents a game-changing opportunity for crop improvement in the face of a changing world offering the potential to significantly accelerate the development, marketing, and commercialization of improved plant varieties. Speed breeding, a methodology that manipulates temperature, light duration, and intensity to accelerate plant development, has emerged as a promising solution for achieving climate resilience, long-term yield, and nutritional security. Recent innovations in breeding technologies, including genotyping, marker-assisted selection (MAS), high throughput phenotyping, genomic selection (GS), overexpression/knock-down transgenic techniques, and genome editing, can be combined with speed breeding to achieve more precise and expedited outcomes in crop enhancement. This review explores the key opportunities and challenges associated with speed breeding to guide pre-breeding and breeding programs. To achieve more efficient outcomes in enhancing major food crops, this review highlights various alternative approaches and strategies adopted for speed breeding. Integrating speed breeding with existing technologies will be essential for future crop breeding success, and concerted efforts and ongoing research holds the potential to pave the way for a resilient and productive agricultural future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  • Abdul Fiyaz R, Ajay BC, Ramya KT, Aravind Kumar J, Sundaram RM, Subba Rao LV (2020) Speed breeding: methods and applications. Accelerated Plant Breeding 1(Cereal Crops):31–49

    Article  Google Scholar 

  • Ahmad S, Makhmale S, Bosamia TC, Sangh C, Nawade B (2021) Speed breeding: a potential tool for mitigating abiotic stresses. In Stress Tolerance in Horticultural Crops (pp. 51–61). Woodhead Publishing

  • Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21(7):2590. https://doi.org/10.3390/ijms21072590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Tamimi N, Brien C, Oakey H, Berger B, Saade S, Ho YS, Schmöckel SM, Tester M, Negrao S (2016) Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat Commun 7:13342

    Article  PubMed  PubMed Central  Google Scholar 

  • Alahmad S, Dinglasan E, Leung KM, Riaz A, Derbal N, Voss-Fels KP, Able JA, Bassi FM, Christopher J, Hickey LT (2018) Speed breeding for multiple quantitative traits in durum wheat. Plant Methods 14:1–15

    Article  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. FAO, Rome

    Google Scholar 

  • Ali B, Hayat S, Aiman Hasan S, Ahmad A (2008) A comparative effect of IAA and 4-Cl-IAA on growth, nodulation and nitrogen fixation in Vigna radiata (L.) Wilczek. Acta Physiol Plant 30:34–51. https://doi.org/10.1007/S11738-007-0088-4

    Article  Google Scholar 

  • Amit K (2018) Artificial Intelligence and Soft Computing: Behavioral and Cognitive Modeling of the Human Brain; CRC Press: Boca Raton. FL, USA

    Google Scholar 

  • Ausín I, Alonso-Blanco C, Martinez-Zapater JM (2005) Environmental regulation of flowering. Int J Dev Biol 49:689–705

    Article  PubMed  Google Scholar 

  • Awlia M, Nigro A, Fajkus J, Schmoeckel SM, Negrão S, Santelia D, Trtílek M, Tester M, Julkowska MM, Panzarová K (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front Plant Sci 7:1414. https://doi.org/10.3389/fpls.2016.01414

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu HP, Kumar M, Gaikwad KB, Kumar R, Kumar N, Palaparthi D, Bharti H, Kamre K, Yadav R (2022) Rapid Generation Advancement and Fast-Track Breeding Approaches in Wheat Improvement. In: Gowdra Mallikarjuna, M., Nayaka, S.C., Kaul, T. (eds) Next-Generation Plant Breeding Approaches for Stress Resilience in Cereal Crops. Springer, Singapore. https://doi.org/10.1007/978-981-19-1445-4_7

  • Baier K, Maynard C, Powell WA (2012) Early flowering in chestnut species induced under high intensity, high dose light in growth chambers. J Am Chestnut Found 26:8–10

    Google Scholar 

  • Bakala HS, Singh G, Srivastava P (2020) Smart breeding for climate resilient agriculture. In Plant breeding-current and future views. IntechOpen

  • Bauerle WL (2019) Disentangling photoperiod from hop vernalization and dormancy for global production and speed breeding. Sci Rep 9(1):16003

    Article  PubMed  PubMed Central  Google Scholar 

  • Begna T (2022) Speed breeding to accelerate crop improvement. International Journal of Agricultural Science and Food Technology 8(2):178–186

    Google Scholar 

  • Belwal P, Mangal M, Saini N, Sharma BB, Rao M, Kumar A, Khar A (2024) Effect of genotype, media and stress treatments on gynogenesis efficiency in short-day tropical Indian onion (Allium cepa L.). Plant Cell Tissue Organ Cult (PCTOC) 156:14. https://doi.org/10.1007/s11240-023-02638-9

    Article  CAS  Google Scholar 

  • Bhattaraj SP, de la Pena RC, Midmore DJ, Palchamy K (2009) In vitro culture of immature seed for rapid generation advancement in tomato. Euphytica 167:23–30

    Article  Google Scholar 

  • Bielska S, Plewiński P, Kozak B et al (2020) Photoperiod and vernalization control of flowering-related genes: a case study of the narrow-leafed Lupin (Lupinus angustifolius L.). Front Plant Sci 11:1576. https://doi.org/10.3389/FPLS.2020.572135/BIBTEX

    Article  Google Scholar 

  • Bonhomme R (2000) Bases and limits to using ‘degree.day’ units. Eur J Agron 13:1–10

    Article  Google Scholar 

  • Borlaug N (1968) Wheat Breeding and Its Impact on World Food Supply; Finlay, K.W., Shephard, K.W., Eds.; Australian Academy of Sciences: Canberra, Australia 1–36

  • Borlaug NE (2007) Sixty-two years of fighting hunger: personal recollections. Euphytica 157:287–297. https://doi.org/10.1007/S10681-007-9480-9

    Article  Google Scholar 

  • Borovsky Y, Mohan V, Shabtai S, Paran I (2020) CaFT-LIKE is a flowering promoter in pepper and functions as florigen in tomato. Plant Sci 301:110678

    Article  CAS  PubMed  Google Scholar 

  • Brim CA (1966) A Modified Pedigree Method of Selection in Soybeans 1. Crop Sci 6:220

    Article  Google Scholar 

  • Burris JS (1973) Effect of Seed Maturation and Plant Population on Soybean Seed Quality. Agron J 65:440–441

    Article  Google Scholar 

  • Casal JJ, Yanovsky MJ (2005) Regulation of gene expression by light. Int J Dev Bio 49:501–511

    Article  CAS  Google Scholar 

  • Cazzola F, Bermejo CJ, Guindon MF, Cointry E (2020) Speed breeding in pea (Pisum sativum L.), an efficientand simple system to accelerate breeding programs. Euphytica 216(11):1–11

    Article  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Gajendiran K, Wulff BB (2024) R we there yet? Advances in cloning resistance genes for engineering immunity in crop plants. Curr Opin Plant Biol 77:102489. https://doi.org/10.1016/j.pbi.2023.102489

    Article  CAS  PubMed  Google Scholar 

  • Chimmili SR, Kanneboina S, Hanjagi PS, Basavaraj PS, Sakhare AS, Senguttuvel P, Kumar S, Kota S (2022) Integrating Advanced Molecular, Genomic, and Speed Breeding Methods for Genetic Improvement of Stress Tolerance in Rice. In: Gowdra Mallikarjuna M, Nayaka SC, Kaul T (eds) Next-Generation Plant Breeding Approaches for Stress Resilience in Cereal Crops. Springer, Singapore. https://doi.org/10.1007/978-981-19-1445-4_8

  • Chiurugwi T, Kemp S, Powell W, Hickey LT (2019) Speed breeding orphan crops. Theor Appl Genet 132:607–616

    Article  PubMed  Google Scholar 

  • Chowdhury S, Wardlaw I (1978) The effect of temperature on kernel development in cereals. Aust J Agric Res 29:205

    Article  Google Scholar 

  • Collard BC, Beredo JC, Lenaerts B, Mendoza R, Santelices R, Lopena V, Verdeprado H, Raghavan C, Gregorio GB, Vial L, Demont M, Biswas PS, Iftekharuddaula KM, Rahman MA, Cobb JN, Islam MR (2017) Revisiting rice breeding methods—Evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod Sci 20:337–352

    Article  Google Scholar 

  • Croser JS, Pazos-Navarro M, Bennett RG, Tschirren S, Edwards K, Erskine W, Creasy R, Ribalta FM (2016) Time to flowering of temperate pulses in vivo and generation turnover in vivo–in vitro of narrow-leaf lupin accelerated by low red to far-red ratio and high intensity in the far-red region. Plant Cell Tissue Organ Cult 127:591–599. https://doi.org/10.1007/s11240-016-1092-4

    Article  CAS  Google Scholar 

  • Dagustu N, Bayram G, Sincik M, Bayraktaroglu M (2012) The Short Breeding Cycle Protocol Effective on Diverse Genotypes of Sunflower (Helianthus annuus L.). Turkish J Field Crop 17:124–128

    Google Scholar 

  • Das G, Patra JK, Baek KH (2017) Insight into MAS: A molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8:1–9. https://doi.org/10.3389/fpls.2017.00985

    Article  Google Scholar 

  • Davydenko OG, Zhmurko VV, Goloenko DV, Rozenzveig VE, Shablinskaja OV (2004) Izuchenie fotoperiodizma rannespelyh sortov soi. Selekcija I nasinnictvo 88:151–162

    Google Scholar 

  • De La Fuente GN, Frei UK, Lübberstedt T (2013) Accelerating plant breeding. Trends Plant Sci 18:667–672. https://doi.org/10.1016/j.tplants.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  • De Storme N, Geelen D (2020) High temperatures alter cross-over distribution and induce male meiotic restitution in Arabidopsis thaliana. Commun Biol 3:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Demers D-A, Dorais M, Wien CH, Gosselin A (1998) Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Sci Hortic 74:295–306

    Article  Google Scholar 

  • Dinglasan E, Godwin ID, Mortlock MY, Hickey LT (2016) Resistance to yellow spot in wheat grown under accelerated growth conditions. Euphytica 209:693–707. https://doi.org/10.1007/S10681-016-1660-Z

    Article  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Dormatey R, Sun C, Ali K, Coulter JA, Bi Z, Bai J (2020) Gene pyramiding for sustainable Crop improvement against biotic and abiotic stresses. Agronomy 10(9):1255. https://doi.org/10.3390/agronomy10091255

    Article  CAS  Google Scholar 

  • Doudna JAC, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  • Draeger T, Moore G (2017) Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 130:1785–1800. https://doi.org/10.1007/s00122-017-2925-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan YX, Fan J, Guo WW (2010) Regeneration and characterization of transgenic kumquat plants containing the Arabidopsis APETALA1 gene. Plant Cell Tissue Organ Cult 100:273–281

    Article  CAS  Google Scholar 

  • Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: constraints and opportunities in plant breeding. Biotech Adv 33:812–829. https://doi.org/10.1016/j.biotechadv.2015.07.001

    Article  Google Scholar 

  • Espósito MA, Almirón P, Gatti I, Cravero VP, Anido FSL, Cointry EL (2012) Methodology A rapid method to increase the number of F1 plants in pea (Pisum sativum) breeding programs. Genet Mol Res 11:2729–2732

    Article  PubMed  Google Scholar 

  • Fang Y, Wang L, Sapey E, Fu S, Wu T, Zeng H, Han T (2021) Speed-breeding system in soybean: integrating off-site generation advancement, fresh seeding, and marker-assisted selection. Front Plant Sci 12:717077

    Article  PubMed  PubMed Central  Google Scholar 

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–931

    Article  Google Scholar 

  • Ferrie AMR (2007) Doubled haploid production in nutraceutical species: A review. Euphytica 158:347–357

    Article  Google Scholar 

  • Flachowsky H, Le Roux P-M, Peil A, Patocchi A, Richter K, Hanke M-V (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early fowering plants and marker-assisted selection. New Phytol 192(2):364–377. https://doi.org/10.1111/j.1469-8137.2011.03813.x

    Article  CAS  PubMed  Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375

    Article  CAS  PubMed  Google Scholar 

  • Fox JL (2013) Mars collaborates to sequence Africa’s neglected food crops. Nat Biotechnol 31:867

    Article  CAS  PubMed  Google Scholar 

  • Fuchs LK, Jenkins G, Phillips DW (2018) Anthropogenic impacts on meiosis in plants. Front Plant Sci 9:1429

    Article  PubMed  PubMed Central  Google Scholar 

  • Gai J, Liu K, Zhao J (2015) A review on advances in science and technology in Chinese seed industry. Sci Agric Sin 48:3303–3315

    Google Scholar 

  • Gatsuk LE, Smirnova OV, Vorontzova LI, Zaugolnova LB, Zhukova LA (1980) Age states of plants of various growth forms: a review. J Ecol 68:675–696

    Article  Google Scholar 

  • Gaur PM, Samineni S, Gowda CLL, Rao BV (2007) Rapid generation advancement in chickpea. J SAT Agric Res 3(1)

  • Gebologlu N, Bozmaz S, Aydin M, Çakmak P (2011) The role of growth regulators, embryo age and genotypes on immature embryo germination and rapid generation advancement in tomato (Lycopersicon esculentum Mill.). Afr J Biotechnol 10:4895–4900

    CAS  Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Hickey LT (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13(12):2944–2963

    Article  CAS  PubMed  Google Scholar 

  • Gilliland TJ, Annicchiarico P, Julier B, Ghesquière M (2020) A proposal for enhanced EU herbage VCU and DUS testing procedures. Grass Forage Sci. https://doi.org/10.1111/gfs.12492

    Article  Google Scholar 

  • Gimeno-Paez E, Prohens J, Moreno-Cervero M, de Luis-Margarit A, Diez MJ, Gramazio P (2023) Agronomic treatments combined with embryo rescue for rapid generation advancement in tomato speed breeding. bioRxiv 2023–02. https://doi.org/10.1101/2023.02.28.530438

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. https://doi.org/10.1126/SCIENCE.1185383

    Article  CAS  PubMed  Google Scholar 

  • Godwin ID, Rutkoski J, Varshney RK, Hickey LT (2019) Technological perspectives for plant breeding. Theor Appl Genet 132(3):555–557. https://doi.org/10.1007/s00122-019-03321-4

    Article  PubMed  Google Scholar 

  • González-Barrios P, Bhatta M, Halley M, Sandro P, Gutiérrez L (2020) Speed breeding and early panicle harvest accelerates oat (Avena sativa L.) breeding cycles. Crop Sci. https://doi.org/10.1002/csc2.20269

    Article  Google Scholar 

  • Gorjanc G, Gaynor RC, Hickey JM (2018) Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor Appl Genet 131(9):1953–1966. https://doi.org/10.1007/s00122-018-3125-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Goulden CH (1939) Problems in Plant Selection. Cambridge University Press, Cambridge, UK, pp 132–133

    Google Scholar 

  • Goulden CH (1941) Problems in plant selection. Int Congr Genet 1039:132–133

    Google Scholar 

  • Goyal L, Kaur M, Mandal M, Panda D, Karmakar S, Molla KA, Bhatia D (2024) Potential gene editing targets for developing haploid inducer stocks in rice and wheat with high haploid induction frequency. 3 Biotech 14. https://doi.org/10.1007/s13205-023-03857-9

  • Greenway MB, Phillips IC, Lloyd MN, Hubstenberger JF, Phillips GC (2012) A nutrient medium for diverse applications and tissue growth of plant species in vitro. In Vitro Cell Dev Biol Plant 48:403–410. https://doi.org/10.1007/s11627-012-9452-1

    Article  CAS  Google Scholar 

  • Gudi S, Saini DK, Singh G, Halladakeri P, Kumar P, Shamshad M, Tanin MJ, Singh S, Sharma A (2022) Unravelling consensus genomic regions associated with quality traits in wheat using meta-analysis of quantitative trait loci. Planta 255(6):1–19. https://doi.org/10.1007/s00425-022-03904-4

    Article  CAS  Google Scholar 

  • Harfouche AL, Jacobson DA, Kainer D, Romero JC, Harfouche AH, Mugnozza GS, Altman A (2019) Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol 37(11):1217–1235

    Article  CAS  PubMed  Google Scholar 

  • Haroon M, Wang X, Afzal R, Zafar MM, Idrees F, Batool M, Khan AS, Imran M (2022) Novel plant breeding techniques shake hands with cereals to increase production. Plants 11:1052. https://doi.org/10.3390/plants11081052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison D, Da Silva M, Wu C, De Oliveira M, Ravelombola F, Florez-Palacios L, Mozzoni L (2021) Effect of light wavelength on soybean growth and development in a context of speed breeding. Crop Sci 61(2):917–928

    Article  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10. https://doi.org/10.1016/J.WACE.2015.08.001

    Article  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Helfer LR (2004) Intellectual property rights in plant varieties: international legal regimes and policy options for national governments (No. 31). Food & Agriculture Org. Available at: https://www.farmersrights.org/getfile.php/132258-1663315287/Dokumenter/SSRN-id711842.pdf. Accessed 26 Jan 2024

  • Hickey LT, Dieters MJ, DeLacy IH, Kravchuk OY, Mares DJ, Banks PM (2009) Grain dormancy in fixed lines of white-grained wheat (Triticum aestivum L.) grown under controlled environmental conditions. Euphytica 168(3):303–310. https://doi.org/10.1007/s10681-009-9929-0

    Article  CAS  Google Scholar 

  • Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, Platz GJ, Franckowiak JD, Dieters MJ (2017a) Speed breeding for multiple disease resistance in barley. Euphytica 213(3):1–14. https://doi.org/10.1007/s10681-016-1803-2

    Article  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal- Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Wilkinson PM, Knight CR, Godwin ID, Kravchuk OY, Aitken EA, Bansal UK, Bariana HS, DeLacy IH, Dieters MJ (2012) Rapid phenotyping for adult-plant resistance to stripe rust in wheat. Plant Breed 131:54–61. https://doi.org/10.1111/j.1439-0523.2011.01925.x

    Article  Google Scholar 

  • Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, Dieters MJ (2017b) Speed breeding for multiple disease resistance in barley. Euphytica 213:64. https://doi.org/10.1007/s10681-016-1803-2

    Article  Google Scholar 

  • Hussain B (2015) Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk J Agric for 39:515–530

    Article  CAS  Google Scholar 

  • Jackson SD, Jackson SD (2009) Plant responses to photoperiod. New Phytol 181:517–531

    Article  CAS  PubMed  Google Scholar 

  • Jähne F, Hahn V, Würschum T, Leiser WL (2020) Speed breeding short-day crops by LED-controlled light schemes. Theor Appl Genet 133(8):2335–2342

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamali SH, Cockram J, Hickey LT (2019) Insights into deployment of DNA markers in plant variety protection and registration. Theor Appl Genet 132:1911–1929. https://doi.org/10.1007/S00122-019-03348-7

    Article  CAS  PubMed  Google Scholar 

  • Jamali SH, Cockram J, Hickey LT (2020) Is plant variety registration keeping pace with speed breeding techniques? Euphytica 216:1–13. https://doi.org/10.1007/s10681-020-02666-y

    Article  Google Scholar 

  • Jarosz L (2000) Understanding agri-food networks as social relations. Agric Hum Values 17:279–283

    Article  Google Scholar 

  • Jighly A, Lin Z, Pembleton LW, Cogan NO, Spangenberg GC, Hayes BJ, Daetwyler HD (2019) Boosting genetic gain in allogamous crops via speed breeding and genomic selection. Front Plant Sci 10:1364

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Chauhan BS (2023) Challenges and opportunities to sustainable crop production. Plant Small RNA in Food Crops 25–43

  • Khalil S, El-saeid H, Shalaby M (2006) The role of kinetin in flower abscission and yield of lentil plant. J Appl Sci Res 2:587

    Google Scholar 

  • Khan MHU, Wang S, Wang J, Ahmar S, Saeed S, Khan SU, Xu X, Chen H, Bhat JA, Feng X (2022) Applications of artificial intelligence in climate-resilient smart-crop breeding. Int J Mol Sci 23:11156. https://doi.org/10.3390/ijms231911156

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitaya Y, Niu G, Kozai T, Ohashi M (1998) Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants. Hortic Sci 33:988–991

    Google Scholar 

  • Korbo A, Kjær ED, Sanou H, Ræbild A, Jensen JS, Hansen JK (2013) Breeding for high production of leaves of baobab (Adansonia digitata L) in an irrigated hedge system. Tree Genet Genomes 9:779–793. https://doi.org/10.1007/s11295-013-0595-y

    Article  Google Scholar 

  • Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S, Mishra CN, Khan H, Gangadhara K, Uday G, Singh G (2021) Integrated genomic selection for rapid improvement of crops. Genomics 113(3):1070–1086

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Khan AW, Saxena RK, Garg V, Varshney RK (2016) First-generation HapMap in Cajanus spp. reveals untapped variations in parental lines of mapping populations. Plant Biotechnol J 14(8):1673–1681. https://doi.org/10.1111/pbi.12528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Bohra A, Mir RR, Sharma R, Tiwari A, Khan MA, Varshney RK (2021) Next generation breeding in pulses: Present status and future directions. Crop Breed Appl Biotechnol. https://doi.org/10.1590/1984-70332021v21Sa26

    Article  Google Scholar 

  • Lenaerts B, Collard BCY, Demont M (2019) Review: Improving global food security through accelerated plant breeding. Plant Sci 287:110207. https://doi.org/10.1016/j.plantsci.2019.110207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Wang Y, Yu L, Liu Q, Liu C, Liu T (2016) Planting and breeding technology of maize inbred lines of three generations in one year. Chin Agri Sci Bull 32:64–69

    CAS  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186. https://doi.org/10.1016/j.tplants.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zwer P, Wang H, Liu C, Lu Z, Wang Y, Yan G (2016) A fast generation cycling system for oat and triticale breeding. Plant Breed 135:574–579. https://doi.org/10.1111/pbr.12408

    Article  Google Scholar 

  • Lulsdorf MM, Banniza S (2018) Rapid generation cycling of an F2 population derived from a cross between Lens culinaris Medik. and Lens ervoides (Brign.) Grande after aphanomyces root rot selection. Plant Breed 137:486–491. https://doi.org/10.1111/pbr.12612

    Article  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Mabuza LM, Mchunu NP, Crampton BG, Swanevelder DZ (2023) Accelerated breeding for helianthus annuus (Sunflower) through doubled haploidy: an insight on past and future prospects in the era of genome editing. Plants 12(3):485. https://doi.org/10.3390/plants12030485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahapatra S (2015) Impact of climate change on Indian agriculture. pp. 213–228. CRC Press

  • Mallikarjuna MG, Veeraya P, Tomar R, Jha S, Nayaka SC, Lohithaswa HC, Chinnusamy V (2022) Next-generation breeding approaches for stress resilience in cereals: current status and future prospects. Next-Generation Plant Breeding Approaches for Stress Resilience in Cereal Crops 1–43

  • Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled Haploid Production in Crop Plants: A Manual. Springer, Netherlands, pp 309–335

    Chapter  Google Scholar 

  • Manzur J, Oliva-Alarcón M, Rodríguez-Burruezo A (2014) In vitro germination of immature embryos for accelerating generation advancement in peppers (Capsicum annuum L.). Sci Hortic 170:203–210

    Article  CAS  Google Scholar 

  • Matova PM, Kamutando CN, Warburton ML, Williams WP, Magorokosho C, Shimelis H, Gowda M (2023) New techniques for breeding maize (Zea mays) varieties with fall armyworm resistance and market-preferred traits for sub-Saharan Africa. Plant Breeding 142(1):1–11. https://doi.org/10.1111/pbr.13063

    Article  Google Scholar 

  • Mehta S, James D, Reddy M (2019) Omics technologies for abiotic stress tolerance in plants: Current status and prospects. In Recent Approaches in Omics for Plant Resilience to Climate Change; Wani, S., Ed.; Springer: Cham, Switzerland, pp. 1–34

  • Mendel G (1965) Experiments in Plant Hybridisation; Harvard University Press: Cambridge. MA, USA

    Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A (2015) Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In vitro Cell Dev Biol- Plant 51(1):71–79. https://doi.org/10.1007/s11627-014-9647-8

    Article  CAS  Google Scholar 

  • Mobini SH, Warkentin TD (2016) A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cell Dev Plant 52:530–536

    Article  CAS  Google Scholar 

  • Monostori I, Heilmann M, Kocsy G, Rakszegi M, Ahres M, Altenbach SB, Szalai G, Pál M, Toldi D, Simon-Sarkadi L, Harnos N, Galiba G, Darko É (2018) LED lighting – modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Front Plant Sci 9:605. https://doi.org/10.3389/fpls.2018.00605

    Article  PubMed  PubMed Central  Google Scholar 

  • Montesinos-López OA, Montesinos-López A, Crossa J, Gianola D, Hernández-Suárez CM, Martín-Vallejo J (2018) Multi-trait, multi-environment deep learning modeling for genomic-enabled prediction of plant traits. G3 Genes Genomes Genet 8:3829–3840

    Article  Google Scholar 

  • Murage E, Masuda M (1997) Response of pepper and eggplant to continuous light in relation to leaf chlorosis and activities of antioxidative enzymes. Sci Hortic 70:269–279

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nabwire S, Suh HK, Kim MS, Baek I, Cho BK (2021) Application of artificial intelligence in phenomics. Sensors 21(13):4363. https://doi.org/10.3390/s21134363

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagatoshi Y, Fujita Y (2019) Accelerating soybean breeding in a CO2-supplemented growth chamber. Plant Cell Physiol 60:77–84

    Article  CAS  PubMed  Google Scholar 

  • Najafabadi MY (2021) Using advanced proximal sensing and genotyping tools combined with bigdata analysis methods to improve soybean yield. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada

  • Niazian M, Niedbała G (2020) Machine learning for plant breeding and biotechnology. Agriculture 10(10):436. https://doi.org/10.3390/agriculture10100436

    Article  CAS  Google Scholar 

  • O’Connor DJ, Wright GC, Dieters MJ, George DL, Hunter MN, Tatnell JR, Fleischfresser DB (2013) Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci 40:107–114. https://doi.org/10.3146/ps12-12.1

    Article  Google Scholar 

  • Ochatt SJ, Sangwan RS, Marget P, Assoumou NY, Rancillac Y, Perney P, Robbelen G (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumeshh. Plant Breed 121:436–440. https://doi.org/10.1046/J.1439-0523.2002.746803.X

    Article  Google Scholar 

  • Ohler TA, Mitchell CA (1996) Identifying yield-optimizing environments for two cowpea breeding lines by manipulating photoperiod and harvest scenario. J Am Soc Hortic Sci 121(3):576–581

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Yoshino M, Yamakawa H, Kinoshita T (2011) The Biotron Breeding System: A Rapid and Reliable Procedure for Genetic Studies and Breeding in Rice. Plant Cell Physiol 52:1249–1257

    Article  CAS  PubMed  Google Scholar 

  • Ooi A, Wong A, Ng TK, Marondedze C, Gehring C, Ooi BS (2016) Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light. Sci Rep 6:33885. https://doi.org/10.1038/srep33885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz R, Trethowan R, Ferrara GO, Iwanaga M, Dodds JH, Crouch JH, Crossa J, Braun HJ (2007) High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica 157:365–384

    Article  Google Scholar 

  • Pandey S, Singh A, Parida SK, Prasad M (2022) Combining speed breeding with traditional and genomics-assisted breeding for crop improvement. Plant Breeding 141(3):301–313

    Article  CAS  Google Scholar 

  • Parmar S, Deshmukh DB, Kumar R, Manohar SS, Joshi P, Sharma V, Chaudhari S, Variath MT, Gangurde SS, Bohar R, Singam P, Varshney RK, Janila P, Pandey MK (2021) Single seed-based high-throughput genotyping and rapid generation advancement for accelerated groundnut genetics and breeding research. Agronomy 11:1226

    Article  CAS  Google Scholar 

  • Parmley KA, Higgins RH, Ganapathysubramanian B, Sarkar S, Singh AK (2019) Machine learning approach for prescriptive plant breeding. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-53451-483

    Article  CAS  Google Scholar 

  • Parveen R, Kumar M, Swapnil et al (2023) Understanding the genomic selection for crop improvement: current progress and future prospects. Mol Genet Genomics 298:813–821. https://doi.org/10.1007/s00438-023-02026-0

    Article  CAS  PubMed  Google Scholar 

  • Pazhamala L, Saxena RK, Singh VK, Sameerkumar CV, Kumar V, Sinha P, Patel K, Obala J, Kaoneka SR, Tongoona P, Shimelis HA, Gangarao NVPR, Odeny D, Rathore A, Dharmaraj PS, Yamini KN, Varshney RK (2015) Genomic sassisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan). Front Plant Sci 6:50. https://doi.org/10.3389/fpls.2015.00050

    Article  PubMed  PubMed Central  Google Scholar 

  • Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19(12):500–506. https://doi.org/10.1016/s0167-7799(01)01815-7

    Article  PubMed  Google Scholar 

  • Penfield S (2017) Seed dormancy and germination. Curr Biol 27:R874–R878. https://doi.org/10.1016/J.CUB.2017.05.050

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320:171–173. https://doi.org/10.1126/sciene.320.5873.171

    Article  CAS  PubMed  Google Scholar 

  • Prabhu AS, Filippi MC, Silva GB, Lobo LS, Morais OP (2009) An unprecedented outbreak of rice blast on a newly released cultivar BRS Colosso in Brazil. In Advances in genetics, genomics and control of rice blast disease pp. 257–266 Springer. https://doi.org/10.1007/978-1-4020-9500-9

  • Pratap A, Prajapati U, Singh CM, Gupta S, Rathore M, Malviya N, Tomar R, Gupta AK, Tripathi S, Singh NP (2018) Potential, constraints and applications of in vitro methods in improving grain legumes. Plant Breed 137:235–249. https://doi.org/10.1111/pbr.12590

    Article  Google Scholar 

  • Rai KK (2022) Integrating speed breeding with artificial intelligence for developing climate-smart crops. Mol Biol Rep 49(12):11385–11402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju CSN, Sagar CK (2020) Speed breeding in agriculture future prospects. Int J Curr Microbiol Appl Sci 9(12):1059–1076. https://doi.org/10.20546/ijcmas.2020.912.128

    Article  Google Scholar 

  • Rana MM, Takamatsu T, Baslam M, Kaneko K, Itoh K, Harada N, Sugiyama T, Ohnishi T, Kinoshita T, Takagi H, Mitsui T (2019) Salt tolerance improvement in rice through efficient SNP marker-assisted selection coupled with speed-breeding. Int J Mol Sci 10:2585

    Article  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 31(3):1–7. https://doi.org/10.1038/ncomms2296

    Article  CAS  Google Scholar 

  • Razzaq A, Kaur P, Akhter N, Wani SH, Saleem F (2021) Next-generation breeding strategies for climate-ready crops. Front Plant Sci 12:620420. https://doi.org/10.3389/fpls.2021.620420

    Article  PubMed  PubMed Central  Google Scholar 

  • Riaz A, Periyannan S, Aitken E, Hickey L (2016) A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods 12:17. https://doi.org/10.1186/s13007-016-0117-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaut JM, Ragot M (2019) Modernising breeding for orphan crops: tools, methodologies, and beyond. Planta 250:971–977. https://doi.org/10.1007/s00425-019-03200-8

    Article  CAS  PubMed  Google Scholar 

  • Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JT (2015) High-throughput phenotyping of seminal root traits in wheat. Plant Methods 11:13. https://doi.org/10.1186/s13007-015-0055-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizal G, Karki S, Alcasid M, Montecillo F, Acebron K, Larazo N, Garcia R, Slamet-Loedin IH, Quick WP (2014) Shortening the breeding cycle of sorghum, a model crop for research. Crop Sci 54:520–529

    Article  Google Scholar 

  • Rodrmguez EPB, Morante N, Salazar S, Hyde PT, Setter TL, Kulakow P, Zhang X (2023) Flower-inducing technology facilitates speed breeding in cassava. Front Plant Sci 14:1172056. https://doi.org/10.3389/fpls.2023.1172056

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg LA, Rinne RW (1987) Changes in seed constituents during germination and seedling growth of precociously matured soybean seeds (Glycine max (L.) Merr.). Ann Bot 60:705–712

    Article  CAS  Google Scholar 

  • Roumet P, Morin F (1997) Germination of immature soybean seeds to shorten reproductive cycle duration. Crop Sci 37:521–525

    Article  Google Scholar 

  • Rowell T, Mortley DG, Loretan PA, Bonsi CK, Hill WA (1999) Continuous daily light period and temperature influence peanut yield in nutrient film technique. Crop Sci 39:1111–1114

    Article  Google Scholar 

  • Saeid HM, Abouziena HF, AbdAlla MSA (2011) Effect of some bioregulators on white lupine (lupinus termis) seed yield and its components and on endogenous hormones content in seeds. Electron J Polish Agric Univ 14:2

    Google Scholar 

  • Samantara K, Bohra A, Mohapatra SR, Prihatini R, Asibe F, Singh L, Varshney RK (2022) Breeding more crops in less time: a perspective on speed breeding. Biology 11(2):275. https://doi.org/10.3390/biology11020275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samineni S, Sen M, Sajja SB, Gaur PM (2020) Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop J 8:164–169

    Article  Google Scholar 

  • Sartor RC, Noshay J, Springer NM, Briggs SP (2019) Identification of the expressome by machine learning on omics data. Proc Natl Acad Sci USA 116(36):18119–18125. https://doi.org/10.1073/pnas.1813645116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena K, Saxena RK, Varshney RK (2017) Use of immature seed germination and single seed descent for rapid genetic gains in pigeonpea. Plant Breed 136:954–957

    Article  CAS  Google Scholar 

  • Saxena KB, Saxena RK, Hickey LT, Varshney RK (2019) Can a speed breeding approach accelerate genetic gain in pigeonpea? Euphytica 215:1–7. https://doi.org/10.1007/s10681-019-2520-4

    Article  Google Scholar 

  • Schilling S, Melzer R, Dowling CA, Shi J, Muldoon S, McCabe PF (2023) A protocol for rapid generation cycling (speed breeding) of hemp (Cannabis sativa) for research and agriculture. Plant J 113:437–445. https://doi.org/10.1111/tpj.16051

    Article  CAS  PubMed  Google Scholar 

  • Schneiter AA, Miller JF (1981) Description of sunflower growth stages. Crop Sci 21:901–903

    Article  Google Scholar 

  • Schoen A, Wallace S, Holbert MF, Brown-Guidera G, Harrison S, Murphy P, Tiwari V (2023) Reducing the generation time in winter wheat cultivars using speed breeding. Crop Sci 63(4):2079–2090

    Article  Google Scholar 

  • Shaikh TA, Rasool T, Lone FR (2022) Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput Electron Agric 198:107119

    Article  Google Scholar 

  • Sharma A, Jones JB, White FF (2019) Recent advances in developing disease resistance in plants. F1000 Research 8:1934

    Article  Google Scholar 

  • Sharma S, Kumar A, Dhakte P, Raturi G, Vishwakarma G, Barbadikar KM, Deshmukh R (2022) Speed breeding opportunities and challenges for crop improvement. J Plant Growth Regul 42:46–59. https://doi.org/10.1007/s00344-021-10551-8

    Article  CAS  Google Scholar 

  • Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M (2020) Breeding and biotechnological interventions for trait improvement: status and prospects. Planta 252:54. https://doi.org/10.1007/s00425-020-03465-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza LS, Diniz RP, Neves RJ, Alves AAC, Oliveira EJ (2018) Grafting as a strategy to increase flowering of cassava. Sci Hortic 240:544–551. https://doi.org/10.1016/j.scienta.2018.06.070

    Article  Google Scholar 

  • Stetter MG, Zeitler L, Steinhaus A, Kroener K, Biljecki M, Schmid KJ (2016) Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Front Plant Sci 7:816

    Article  PubMed  PubMed Central  Google Scholar 

  • Swami P, Deswal K, Rana V, Yadav D, Munjal R (2023) Speed breeding—a powerful tool to breed more crops in less time accelerating crop research. In Abiotic Stresses in Wheat (pp. 33–49). Academic Press

  • Sysoeva MI, Markovskaya EF, Shibaeva TG (2010) Plants under continuous light: a review. Plant Stress 4(1):5–17

    Google Scholar 

  • Tadele Z (2019) Orphan crops: their importance and the urgency of improvement. Planta 250:677–694

    Article  CAS  PubMed  Google Scholar 

  • Takeno K (2016) Stress-induced flowering: the third category of flowering response. J Exp Bot 67:4925–4934

    Article  CAS  PubMed  Google Scholar 

  • Tanaka J, Hayashi T, Iwata HA (2016) A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed Sci 66:542–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Tehseen MM, Tonk FA, Tosun M, Randhawa HS, Kurtulus E, Ozseven I, Akin B, Nur Zulfuagaoglu O, Nazari K (2022) QTL mapping of adult plant resistance to stripe rust in a doubled haploid wheat population. Front Genet 13:900558. https://doi.org/10.3389/fgene.2022.900558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur P, Kumari N, Kumar A, Sharma P, Chadha S (2024) Recent advances in development and utilization of double haploids (DHs) in economically important vegetable crops. Plant Cell Tissue Organ Cult (PCTOC) 156(1):15. https://doi.org/10.1007/s11240-023-02617-0

    Article  Google Scholar 

  • Tibbitts TW, Bennett SM, Cao W (1990) Control of continuous irradiation injury on potato with daily temperature cycling. Plant Physiol 93:409–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES, Sheldon C (2007) Short vegetative phase-like MADS-Box genes inhibit floral meristem identity in barley. Plant Physiol 143:225–235. https://doi.org/10.1104/PP.106.090860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner MR, Bishaw Z (2017) A review of variety release procedures and related issues with recommendations for good practice. International Center for Agricultural Research in the Dry Areas (ICARDA). Working paper 31. https://repo.mel.cgiar.org/handle/20.500.11766/6362. Accessed 12 Feb 2020

  • Van Dijk ADJ, Kootstra G, Kruijer W, de Ridder D (2021) Machine learning in plant science and plant breeding. iScience 24(1):101890

    Article  PubMed  Google Scholar 

  • Van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Wijk A, Louwaars N (2014) Framework for the Introduction of Plant Breeder’s Rights: Guidance for practical implementation. Naktuinbouw, the Netherlands, 207 pp

  • Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME (2021) Designing future crops: Genomics-assisted breeding comes of age. Trends Plant Sci 26:631–649

    Article  CAS  PubMed  Google Scholar 

  • Velez-Ramirez AI, Van Ieperen W, Vreugdenhil D, Van Poppel PMJA, Heuvelink E, Millenaar FF (2014) A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat Commun 5:4549

    Article  CAS  PubMed  Google Scholar 

  • Vira B, Wildburger C, Mansourian S (2015) International Union of Forestry Research Organizations (Eds.) Forests, Trees and Landscapes for Food Security and Nutrition: A Global Assessment Report; IUFROWorld Series; IUFRO: Vienna, Austria, 2015; ISBN 978–3–902762–40–5

  • Voss-Fels KP, Herzog E, Dreisigacker S, Sukumaran S, Watson A, Frisch M, Hayes B, Hickey LT (2019) “SpeedGS” to accelerate genetic gain in spring wheat. In Applications of genetic and genomic research in cereals (pp. 303–323). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-102163-7.00014-4

  • Wada KC, Takeno K (2010) Stress-induced flowering. Plant Signal Behav 5:944–947. https://doi.org/10.4161/PSB.5.8.11826

    Article  PubMed  Google Scholar 

  • Wang J, Lu W, Tong Y, Yang Q (2016) Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front Plant Sci 7:250

    PubMed  PubMed Central  Google Scholar 

  • Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yu S (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44(10):1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Y, Zhang G, Ma Z (2011) An integrated breeding technology for accelerating generation advancement and trait introgression in cotton. Plant Breed 130:569–573. https://doi.org/10.1111/j.1439-0523.2011.01868.x

    Article  CAS  Google Scholar 

  • Wanga MA, Shimelis H, Mashilo J, Laing MD (2021) Opportunities and challenges of speed breeding: a review. Plant Breed 140(2):185–194

    Article  Google Scholar 

  • Warrington IJ, Norton RA (1991) An evaluation of plant growth and development under various daily quantum integrals. J Am Soc Horti Sci 116:544–551

    Article  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23–29

    Article  PubMed  Google Scholar 

  • Williams PH, Hill CB (2013) Rapid-cycling populations of Brassica. Science 232:1385–1389. https://doi.org/10.1126/science.232.4756.1385

    Article  Google Scholar 

  • Wolfe MD, Del Carpio DP, Alabi O, Ezenwaka LC, Ikeogu UN, Kayondo IS, Lozano R, Okeke UG, Ozimati AA, Williams E, Egesi C, Kawuki RS, Kulakow P, Rabbi IY, Jannink JL (2017) Prospects for genomic selection in cassava breeding. Plant Genome. https://doi.org/10.3835/plantgenome2017.03.0015

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolter F, Schindele P, Puchta H (2019) Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol 19(1):1–8

    Article  Google Scholar 

  • Yang C, Russell J, Ramsay L, Thomas W, Powell W, Mackay I (2021) Overcoming barriers to the registration of new plant varieties under the DUS system. Commun Biol 4(1):302. https://doi.org/10.1038/s42003-021-01840-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Zhang P, Liu H, Lu Z, Yan G (2017) A fully in vitro protocol towards large scale production of recombinant inbred lines in wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 128:655–661

    Article  CAS  Google Scholar 

  • Yel I, Dönmez BA, Yeşil B, Tekinsoy M, Saeed F, Bakhsh A (2023) Doubled haploid production-mechanism and utilization in plant breeding. Advanced Crop Improvement, Volume 1: Theory and Practice. Springer International Publishing, Cham, pp 321–347

    Chapter  Google Scholar 

  • Yoosefzadeh-Najafabadi M, Rajcan I, Vazin M (2022) High-throughput plant breeding approaches: Moving along with plant-based food demands for pet food industries. Front Vet Sci 9:1467

    Article  Google Scholar 

  • Younessi-Hamzekhanlu M, Gailing O (2022) Genome-wide snp markers accelerate perennial forest tree breeding rate for disease resistance through marker-assisted and genome-wide selection. Int J Mol Sci 23(20):12315. https://doi.org/10.3390/ijms232012315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Wang HB, Chen GD, Yan GJ, Liu CJ (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 191(2):311–316. https://doi.org/10.1007/s10681-013-0909-z

    Article  Google Scholar 

  • Zhou J, Xin X, He Y, Chen H, Li Q, Tang X, Zhong Z, Deng K, Zheng X, Akher SA, Cai G, Qi Y, Zhang Y (2019) Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep 38(4):475–485. https://doi.org/10.1007/s00299-018-2340-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ZI: Original draft preparation, final editing and referencing of the manuscript; RS, JPS: Helped in editing and supervises during the writing; RP, SWAPNIL, DS, SS, JPS: Written a part of the manuscript, helped in editing and reviewed the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jyoti Prakash Sahoo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Communicated by: Ray Ming

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imam, Z., Sultana, R., Parveen, R. et al. Understanding the Concept of Speed Breeding in Crop Improvement: Opportunities and Challenges Towards Global Food Security. Tropical Plant Biol. 17, 1–23 (2024). https://doi.org/10.1007/s12042-024-09353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-024-09353-5

Keywords

Navigation