Skip to main content
Log in

Gene Silencing Using Artificial miRNA in Sugarcane

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

One of the most common ways to study gene function is to analyze loss-of-function mutants. In polyploid species, although gene redundancy presents some advantages in nature, it offers an extra obstacle for genetic analyses due to the difficulty of obtaining loss-of-function mutants. Sugarcane presents several alleles at the same locus and the strong interaction between them contribute to the variation of phenotype and potential buffering effect, and this is one of the main challenges to study gene function in this species. Although RNA interference (RNAi) is largely used to produce loss-of-function mutants, due to the large fragments used to construct the hairpin structure, it may generate off-targets that can have confounding effect on the phenotype. The artificial micro RNA technique (amiRNA), an improved method of natural miRNA silencing, has been developed in the past years and is an useful tool for gene silencing in plants with high specificity and decreased off-target effects. In the present work we produced 26 transgenic events using amiRNA targeting the ScPDS gene, encoding a phytoene desaturase homolog. All events presented reduced expression levels of ScPDS. Although some events also showed distinguishable photobleached phenotypes, a high degree of expressivity was observed. Therefore, the use of amiRNA technique can be a good choice to silence genes in sugarcane with higher precision, and, consequently, is also a potential tool to be used in other polyploid species. However, a high number of transgenic events might be needed to achieve high levels of gene silencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C (2016) Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor-product balance. Plant Biotechnol J 14(1):195–205

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell Press 116(2):281–297

    Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363

    Article  CAS  Google Scholar 

  • Bewg WP, Poovaiah C, Lan W, Ralph J, Coleman HD (2016) RNAi downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production. Biotechnol Biofuels 9(1):1–13

    Article  Google Scholar 

  • Casu RE, Manners JM, Bonnett GD, Jackson PA, McIntyre CL, Dunne R, Chapman SC, Rae AL, Grof CPL (2005) Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crop Res 92(2–3 SPEC. ISS.):137–147

    Article  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15(5):266–274

    Article  CAS  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16(4):664–668

    CAS  PubMed  Google Scholar 

  • Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol 142(4):1574–1588

    Article  CAS  Google Scholar 

  • Faisal M, Abdel-Salam EM, Alatar AA (2021) Artificial microRNA-Based RNA Interference and Specific Gene Silencing for Developing Insect Resistance in Solanum lycopersicum. Agronomy 11(1):136

    Article  CAS  Google Scholar 

  • Garcia Tavares R, Lakshmanan P, Peiter E, O’Connell A, Caldana C, Vicentini R, Soares JS, Menossi M (2018) ScGAI is a key regulator of culm development in sugarcane. J Exp Bot 69(16):3823–3837

    Article  Google Scholar 

  • Glassop D, Stiller J, Bonnett GD, Grof CPL, Rae A (2017) An analysis of the role of the ShSUT1 sucrose transporter in sugarcane using RNAi suppression. Funct Plant Biol 44(8):795–808

    Article  CAS  Google Scholar 

  • Glaszmann JC, Fautret A, Noyer JL, Feldmann P, Lanaud C (1989) Biochemical genetic markers in sugarcane. Theor Appl Genet 78(4):537–543

    Article  CAS  Google Scholar 

  • Guidelli GV, Mattiello L, Gallinari RH, de Lucca PC, Menossi M (2018) pGVG: A new Gateway-compatible vector for transformation of sugarcane and other monocot crops. Genet Mol Biol 41(2):450–454

    Article  CAS  Google Scholar 

  • Heinz DJ, Tew TL (1987) Hybridization procedures. In Developments in Crop Science (Vol 11, Issue C). Elsevier B.V

  • Hood EE, Gelvin SB, Melcher LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  Google Scholar 

  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10(9):1067–1076

    Article  CAS  Google Scholar 

  • Jung JH, Kannan B, Dermawan H, Moxley GW, Altpeter F (2016) Precision breeding for RNAi suppression of a major 4-coumarate:coenzyme A ligase gene improves cell wall saccharification from field grown sugarcane. Plant Mol Biol 92(4–5):505–517

    Article  CAS  Google Scholar 

  • Kaur N, Alok A, Shivani Kaur N, Pandey P, Awasthi P, Tiwari S (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genomics 18(1):89–99

    Article  CAS  Google Scholar 

  • Khalil F, Yueyu X, Naiyan X, Di L, Tayyab M, Hengbo W, Islam W, Rauf S, Pinghua C (2018) Genome characterization of Sugarcane Yellow Leaf Virus with special reference to RNAi based molecular breeding. Microb Pathog 120:187–197

    Article  CAS  Google Scholar 

  • Li S, Zhang N, Zhu X, Ma R, Yang J, Tang X, Si H (2020) Enhanced drought tolerance with artificial microRNA-mediated StProDH1 gene silencing in potato. Crop Sci 60(3):1462–1471

    Article  CAS  Google Scholar 

  • Liang G, He H, Li Y, Yu D (2012) A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta 235(6):1421–1429

    Article  CAS  Google Scholar 

  • Lin X, Ruan X, Anderson MG, McDowell JA, Kroeger PE, Fesik SW, Shen Y (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33(14):4527–4535

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Anal Biochem 163(1):16–20

    Article  CAS  Google Scholar 

  • Mohan C, Shibao PYT, de Paula FFP, Toyama D, Vieira MAS, Figueira A, Scotton D, Soares-Costa A, Henrique-Silva F (2021) hRNAi-mediated knock-down of Sphenophorus levis V-ATPase E in transgenic sugarcane (Saccharum spp interspecific hybrid) affects the insect growth and survival. Plant Cell Rep 40(3):507–516

    Article  CAS  Google Scholar 

  • Osabe K, Mudge SR, Graham MW, Birch RG (2009) RNAi mediated down-regulation of PDS gene expression in sugarcane (Saccharum), a highly polyploid crop. Tropical Plant Biology 2(3):143–148

    Article  CAS  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53(4):674–690

    Article  CAS  Google Scholar 

  • Papini-Terzi FS, Felix JM, Rocha FR, Waclawovsky AJ, Ulian EC, Chabregas SM, Falco MC, Nishiyama-Jr MY, Vêncio RZN, Vicentini R, Menossi M, Souza GM (2007) The SUCEST-FUN Project: Identifying genes that regulate sucrose content in sugarcane plants. Proc Int Soc Sugar Cane Technol 26(6):25–29

    Google Scholar 

  • Papini-Terzi FS, Riso Rocha F, Zorzetto Nicoliello Vêncio R, Oliveira KC, Felix JDM, Vicentini R, De Souza RC, Quirino Simões AC, Ulian EC, Zingaretti Di Mauro SM, Da Silva AM, De Bragança Pereira CA, Menossi M, Mendes Souza G (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Res 12(1):27–38

    Article  CAS  Google Scholar 

  • Qiu S, Adema CM, Lane T (2005) A computational study of off-target effects of RNA interference. Nucleic Acids Res 33(6):1834–1847

    Article  CAS  Google Scholar 

  • Ramel F (2013) Nonenzymic carotenoid oxidation and photooxidative stress signaling in plants. J Exp Bot 63(2):695–709

    Google Scholar 

  • Riaño-Pachón DM, Mattiello L (2017) Draft genome sequencing of the sugarcane hybrid SP80–3280. F1000Research 6:861

    Article  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5):1121–1133

    Article  CAS  Google Scholar 

  • Tournayre J, Reichstadt M, Parry L, Fafournoux P, Jousse C (2019) “Do my qPCR calculation”, a web tool. Bioinformation 15(5):369–372

    Article  Google Scholar 

  • Travella S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142(1):6–20

    Article  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524

    Article  CAS  Google Scholar 

  • Wang T, Iyer LM, Pancholy R, Shi X, Hall TC (2005) Assessment of penetrance and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene. New Phytol 167(3):751–760

    Article  CAS  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3(3):13–15

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by São Paulo Research Foundation (FAPESP), research grants 2013/15576-5 and 2014/50884-5 (MM) and National Council for Scientific and Technological Development (CNPq, Brazil; Grants 333270/2018-7 and 465319/2014-9). ALGLP received a fellowship from the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES; Grant 88882.329508/2019-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Menossi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: Graham Bonnett

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

José Sérgio Soares: In memoriam

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peres, A.L.G.L., Coletta, R.D., Soares, J.S. et al. Gene Silencing Using Artificial miRNA in Sugarcane. Tropical Plant Biol. 15, 111–120 (2022). https://doi.org/10.1007/s12042-022-09313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-022-09313-x

Keywords

Navigation