Skip to main content

Recent Advancements in MIGS Toward Gene Silencing Studies in Plants

  • Chapter
  • First Online:
RNA-Based Technologies for Functional Genomics in Plants

Part of the book series: Concepts and Strategies in Plant Sciences ((CSPS))

  • 1768 Accesses

Abstract

In plants, RNA interference (RNAi) causes gene silencing in which small RNAs (sRNAs) inhibit gene expression by causing sequence-specific degradation of target transcripts. Several RNAi-based tools have been developed and optimized to study gene function and trait improvements in plants. One recent strategy based on miRNA-triggered secondary small interfering RNAs (siRNAs) through trans-acting siRNA (tasiRNA) pathway has been developed for efficient gene silencing. In plants, miRNA-mediated cleavage of noncoding TAS RNAs triggers production of tasiRNAs which cause downregulation of one or more target genes. MiRNA-induced gene silencing (MIGS) works on this module in which a single miRNA target site fused with a target gene fragment in a vector triggers production of tasiRNAs and subsequent target gene silencing in plant cells. This technology has been successfully employed to silence one or more target genes to study their role in plant development and stress response. It has gained much attention due to its ease of design and capacity to silence multiple paralogous genes simultaneously. Further, MIGS vector designing does not require whole genome information, making it suitable to be used in plant species which lacks this information. This chapter summarizes recent progress in MIGS and its application in gene function studies and trait improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221

    Article  CAS  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127(3):565–577

    Article  CAS  Google Scholar 

  • Baulcombe DC (2007) Amplified silencing. Science 315(5809):199–200

    Article  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  Google Scholar 

  • Benstein RM, Ludewig K, Wulfert S, Wittek S, Gigolashvili T, Frerigmann H, Gierth M, Flügge UI, Krueger S (2013) Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. Plant Cell 25(12):5011–5029

    Article  CAS  Google Scholar 

  • Carbonell A (2019) Secondary small interfering RNA-Based silencing tools in Plants: An update. Front Plant Sci 10:687

    Google Scholar 

  • Carbonell A, Takeda A, Fahlgren N, Johnson SC, Cuperus JT, Carrington JC (2014) New generation of artificial microRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol 165(1):15–29

    Article  CAS  Google Scholar 

  • Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci 107(34):15269–15274

    Article  CAS  Google Scholar 

  • Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17(8):997

    Article  CAS  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23(2):431–442

    Article  CAS  Google Scholar 

  • de Felippes FF (2013) Downregulation of plant genes with miRNA-induced gene silencing. In: siRNA design. Humana Press, Totowa, NJ, pp 379–387

    Google Scholar 

  • de Felippes FF (2019) Gene regulation mediated by microRNA-triggered secondary small RNAs in plants. Plants 8(5):112

    Article  Google Scholar 

  • de Felippes FF, Wang JW, Weigel D (2012) MIGS: miRNA-induced gene silencing. Plant J 70(3):541–547

    Article  Google Scholar 

  • de la Luz Gutiérrez-Nava M, Aukerman MJ, Sakai H, Tingey SV, Williams RW (2008) Artificial trans-acting siRNAs confer consistent and effective gene silencing. Plant Physiol 147(2):543–551

    Article  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147(2):456–468

    Article  CAS  Google Scholar 

  • Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25(7):2400–2415

    Article  CAS  Google Scholar 

  • Felippes FF, Weigel D (2009) Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173. EMBO Rep 10(3):264–270

    Article  CAS  Google Scholar 

  • Graeff M, Straub D, Eguen T, Dolde U, Rodrigues V, Brandt R, Wenkel S (2016) MicroProtein-mediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in Arabidopsis. PLoS Genetics 12(3)

    Google Scholar 

  • Han Y, Zhang B, Qin X, Li M, Guo Y (2015) Investigation of a mirna-induced gene silencing technique in petunia reveals alterations in mir173 precursor processing and the accumulation of secondary sirnas from endogenous genes. PloS One 10(12)

    Google Scholar 

  • Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA (2013) The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot 64(17):5395–5409

    Article  CAS  Google Scholar 

  • Jacobs TB, Lawler NJ, LaFayette PR, Vodkin LO, Parrott WA (2016) Simple gene silencing using the trans-acting si RNA pathway. Plant Biotechnol J 14(1):117–127

    Article  CAS  Google Scholar 

  • McHale M, Eamens AL, Finnegan EJ, Waterhouse PM (2013) A 22-nt artificial micro RNA mediates widespread RNA silencing in A rabidopsis. Plant J 76(3):519–529

    Article  CAS  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008a) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133(1):128–141

    Article  CAS  Google Scholar 

  • Montgomery TA, Yoo SJ, Fahlgren N, Gilbert SD, Howell MD, Sullivan CM, Alexander A, Nguyen G, Allen E, Ahn JH, Carrington JC (2008b) AGO1-miR173 complex initiates phased siRNA formation in plants. Proc Natl Acad Sci 105(51):20055–20062

    Article  CAS  Google Scholar 

  • Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15(6):423–437

    Article  CAS  Google Scholar 

  • Naito Y, Ui-Tei K (2012) siRNA design software for a target gene-specific RNA interference. Front Genet 3:102

    Article  CAS  Google Scholar 

  • Naito Y, Yamada T, Matsumiya T, Ui-Tei K, Saigo K, Morishita S (2005) dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Res 33(suppl_2):W589-W591

    Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53(4):674–690

    Article  CAS  Google Scholar 

  • Pandey P, Senthil-Kumar M, Mysore KS (2015) Advances in plant gene silencing methods. In: Plant gene silencing. Humana Press, New York, NY, pp 3–23

    Google Scholar 

  • Rajeswaran R, Aregger M, Zvereva AS, Borah BK, Gubaeva EG, Pooggin MM (2012) Sequencing of RDR6-dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis. Nucleic Acids Res 40(13):6241–6254

    Article  CAS  Google Scholar 

  • Rinaldo AR, Ayliffe M (2015) Gene targeting and editing in crop plants: a new era of precision opportunities. Mol Breeding 35(1):40

    Article  Google Scholar 

  • Schwab R, Voinnet O (2010) RNA silencing amplification in plants: size matters. Proc Natl Acad Sci 107(34):14945–14946

    Article  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5):1121–1133

    Article  CAS  Google Scholar 

  • Singh A, Taneja J, Dasgupta I, Mukherjee SK (2015) Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol 16(7):724–734

    Article  CAS  Google Scholar 

  • Voinnet O (2008) Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13(7):317–328

    Article  CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687

    Article  CAS  Google Scholar 

  • Wei KF, Wu LJ, Chen J, Chen YF, Xie DX (2012) Structural evolution and functional diversification analyses of argonaute protein. J Cell Biochem 113(8):2576–2585

    Article  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27(6):581–590

    Article  CAS  Google Scholar 

  • Wulfert S, Krueger S (2018) Phosphoserine Aminotransferase1 is part of the phosphorylated pathways for serine biosynthesis and essential for light and sugar-dependent growth promotion. Front Plant Sci 9:1712

    Article  Google Scholar 

  • Yoshikawa M (2013) Biogenesis of trans-acting siRNAs, endogenous secondary siRNAs in plants. Genes Genet Syst 88(2):77–84

    Article  CAS  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19(18):2164–2175

    Article  CAS  Google Scholar 

  • Zhao M, San León D, Mesel F, García JA, Simón-Mateo C (2015) Assorted processing of synthetic trans-acting siRNAs and its activity in antiviral resistance. PloS One 10(7)

    Google Scholar 

  • Zheng X, Yang L, Li Q, Ji L, Tang A, Zang L, Deng K, Zhou J, Zhang Y (2018) MIGS as a simple and efficient method for gene silencing in rice. Front Plant Sci 9:662

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of Science & Engineering Research Board (SERB), Government of India for National Post-Doctoral Fellowship (PDF/2016/001092) at Institute of Life Sciences, Bhubaneswar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debee Prasad Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, D.P. (2021). Recent Advancements in MIGS Toward Gene Silencing Studies in Plants. In: Tang, G., Teotia, S., Tang, X., Singh, D. (eds) RNA-Based Technologies for Functional Genomics in Plants. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64994-4_2

Download citation

Publish with us

Policies and ethics