Skip to main content
Log in

Thermal-Stable Proteins of Fruit of Long-Living Sacred Lotus Nelumbo nucifera Gaertn var. China Antique

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Single-seeded fruit of the sacred lotus Nelumbo nucifera Gaertn var. China Antique from NE China have been shown to remain viable for as long as ~1,300 years, determined by direct radiocarbon-dating, and to have a germination rate of 84 %. The pericarp, a fruit tissue that encloses the single seeds of Nelumbo, is one of the major factors contributing to fruit longevity. Proteins that are heat stable and have a protective function are equally important to such centuries-long seed viability. We document proteins of Nelumbo fruit that are able to withstand heating, 32 % of which remained soluble in the 110 °C-treated embryo axis of a 549-year-old fruit and 76 % retained fluidity in its cotyledons. The genome of Nelumbo has recently been published and annotated. The amino-acid sequences of 11 “thermal proteins” (soluble at 100 °C) of modern Nelumbo embryo axes and cotyledons, identified by mass spectrometry, Western blot and bioassay, are assembled and aligned with those of an archaeal hyperthermophile Methancaldococcus jannaschii (“Mj,” an anaerobic methanogen having a growth optimum of 85 °C) and with those of five mesophile angiosperms. These thermal proteins have roles in protection and repair under stress. More than half (55 %) of the durable Nelumbo thermal proteins are present in the archaean Mj, indicating their ancient history. One Nelumbo protein-repair enzyme exhibits activity at 100 °C, having a heat-tolerance higher than the comparable enzyme of Arabidopsis. A list of 30 sequenced but unassembled thermal proteins of Nelumbo is appended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AdoMet:

S-adenosyl-L-methionine

CPN20/60:

Chaperonine20/60

CuZn-SOD:

Copper-zinc superoxide dismutase

1-CysPRX:

1-Cys peroxiredoxin

ENO1:

Enolase1

EF-1α:

Elongation factor-1α

EST:

Expressed sequence tag

HSP80:

Heat-shock protein 80

LC-MS-MS:

Liquid-chromatography tandem mass-spectrometry

Mj:

Methancaldococcus jannaschii

PIMT:

Protein L-isoaspartyl methyltransferase

ROS:

Reactive oxygen-species

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(327):1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Bersch U, Soll J, Seetharam R, Viitanen P (1992) Identification, characteristic and DNA sequencing of a functional “double” GroES-like chaperonine from chloroplasts of higher plants. Proc Natl Acad Sci (USA) 89:8696–8700

    Article  Google Scholar 

  • Boonyaratanakornkit BB, Simpson AJ, Whitehead TA et al (2005) Transcriptional profiling of the hyperthermophilic methanoarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ Microbiol 7(6):789–797

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 27:248–254

    Article  Google Scholar 

  • Bult CJ, White O, Olsen GJ, et al (1996) Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273:1058–1073

    Google Scholar 

  • Burnett WN (1981) “Western blotting” electrophoretic transfer of proteins from sodium dodecylsulfate-polyacrylamide gels to unmodified nitrocellulose, and radiographic detection with antibody and radio-iodinated protein A. Anal Biochem 112:195–203

    Article  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BNC Bioinforma 10:421

    Article  Google Scholar 

  • Chang YJ (1978) Thousand-year-old Nelumbo has awakened. Fossil 1:22–23 (in Chinese)

    Google Scholar 

  • Chen CH, Chen SM, Zhou KS (1965) Palynological analysis of the Holocene Nymphaea seed-bearing deposits at the vincinity in Liaoning Peninsula. Quaternaria Sin 4:167–173 (in Chinese)

    Google Scholar 

  • Chen JW, Dodia C, Feinstein SI et al (2000) 1-Cys peroxiredoxin, a Bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 275(37):28421–28427

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Zheng X, Li G et al (2011) Molecular cloning and expression of two cytosolic copper-zinc superoxide dismutases genes from Nelumbo nucifera. Appl Biochem Biotechnol 163:679–691

    Article  Google Scholar 

  • Chu P, Chen H, Zhou Y et al (2012) Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta 235:1271–1288

    Article  PubMed  CAS  Google Scholar 

  • Clarke S (2003) Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damage proteins for repair. Ageing Res Rev 2:263–285

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1997) Dehydrin, a commonality in response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • De Souza CE, Grossi-De-Sa MF, Lima TB et al (2011) Plant storage proteins with antimibrobial avtivity novel insights into plant defense mechanisms. FASEB 25(10):3290–3305

    Article  Google Scholar 

  • DeWeerdt SE (2002) The first sequenced extremophile, what scientists have learned from the M. jannaschii genome. Genome News Network, Feb 1, 2002 www.genomenewsnetwor.org/article/02_03/extremo.shtml

  • Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signa 15(4):1129–1159

    Article  CAS  Google Scholar 

  • Ding YF, Cheng HY, Song SQ (2008) Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds. Sci China Ser C: Life Sci 51(9):824–853

    Google Scholar 

  • Dunwell JM, Kuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64(1):153–179

    Article  PubMed  CAS  Google Scholar 

  • Durso NA, Cyr RJ (1994) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor 1-α. Plant Cell 6:893–905

    PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Edgar RS, Green EW, Zhao Y et al (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–467

    PubMed  CAS  Google Scholar 

  • Eriksson SK, Kutzer M, Procek J et al (2011) Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold induced plant stress protein. Plant Cell 23:2391–2404

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Kosakai H (1975) Laticifers in Nelumbo nucifera Gaertn.: distribution and structure. Am Bot 39:713–719

    Google Scholar 

  • Fu J, Momcilovic I, Prasad PVV (2012) Roles of protein synthesis elongation factor EF-Tu in heat tolerance in plants. J Bot ID 835836:8pp

    Google Scholar 

  • Gaucher EA, Miyamoto MM, Benner SA (2001) Function-structure analysis of proteins using covarion-based evolutionary approaches elongation factors. USA PNAS 98:548–552

    Article  CAS  Google Scholar 

  • Gill T, Kumar A, Ahuja PS, Sreenivasulu (2010) Over-expression of Potentilla superoxide dismutase improve salt stress tolerance during germination and growth in Arabidopsis thaliana. J Plant Genet Trangenics 1:1–10

    Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: multisequence alignments in postscript. Bioinformatics 15:305–308

    Article  PubMed  CAS  Google Scholar 

  • Griffith SC, Sawaya MR, Boytz DR et al (2001) Crystal structures of a repair methyltransferase from Pyrococcus furiosus with its L-isoaspartyl peptide substrate. J Mol Biol 313(5):1103–1116

    Article  PubMed  CAS  Google Scholar 

  • Hill JE, Hemmingsen SM (2001) Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperones 6(3):190–200

    Article  PubMed  CAS  Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66(21):3811–3826

    Article  CAS  Google Scholar 

  • Huang GH (1987) Systematic and distribution of Nelumbo nucifera Gaertn. In: China Nelumbo, Chp 2, Academia Sinica Wuhan Bot Inst, Science Publ pp 9–12 (in Chinese)

  • Huang SZ, Tang XJ, Lu CB et al (2000) Characteristic of superoxide dismutase in lotus seeds. Acta Physiol Sin 26(6):492–496, English abstract

    CAS  Google Scholar 

  • Kasting JF, Howard MT (2006) Atmospheric composition and climate on the early earth. Philos Trans R Soc Lond Bio Sci 361(1474):1733–1742

    Article  CAS  Google Scholar 

  • Kim R, Lai L, Lee HH et al (2003) On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii. PNAS-USA 100(14):8151–8155

    Article  PubMed  CAS  Google Scholar 

  • Koning AJ, Rose R, Comai L (1992) Developmental expression of tomato heat-shock cognate protein 80. Pl Physiol 100:801–811

    Article  CAS  Google Scholar 

  • Kowalski JM, Kelly RM, Konisky J et al (1998) Purification and functional characterization of a charperone from Methanococcus jannaschii. Syst Appl Microbiol 21:173–178

    Article  PubMed  CAS  Google Scholar 

  • Kwon SY, Jeong YJ, Lee HS et al (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbic peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873–882

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of the bacteriophage. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lal SK, Lee C, Sachs MM (1998) Differential regulation of enolase during anaerobiosis in maize. Pl Physiol 118:1285–1293

    Article  CAS  Google Scholar 

  • Mahanty S, Kaul T, Pandey P et al (2012) Biochenical and molecular analyses of copper-zinc superoxide dismutase from a C4 plant Pennisetum glaucum reveals an adaptive role in response to oxidative stress. Gene 505:309–317

    Article  PubMed  CAS  Google Scholar 

  • Marcus JP, Green JL, Goulter KC, Manners JM (1999) A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J 19(6):699–710

    Article  PubMed  CAS  Google Scholar 

  • Ming R, VanBuren R, Liu Y et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14(5):R41

    Article  PubMed  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  • Nelson DR, Schuler MA (2013) Cytochrome P450 genes from the sacred lotus Genome. Trop Plant Biol. doi:10.1007/s12042-013-9119-z

    Google Scholar 

  • Nguyen BA, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple hidden Markov model for nuclear signal prediction. BMC Bioinformatics 10:202. doi:10.1186/1471-2105-10-202

    Article  Google Scholar 

  • Ohga I (1926) On structure of some ancient, still viable fruits of Indian lotus, with special reference to their prolonged dormancy. Jpn J Bot 3:1–20

    Google Scholar 

  • Ohga I (1927) Supramaximal temperature and life duration of the ancient fruits of Indian lotus. Bot Mag 41:161–172

    Google Scholar 

  • Pennington SR, Dunn MJ (2001) Proteomics, from protein sequence to function. BIOS Sci Publ Ltd, UK, p 313

    Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Priestley DA (1986) Seed aging, implication of seed storage and persistence in the soil. Comstock Publ Assoc, Ithaca, 304 pp

    Google Scholar 

  • Priestley DA, Posthumus MA (1982) Extreme longevity of lotus seeds from Pulantien. Nature 299(9):148–149

    Article  Google Scholar 

  • Qu CP, Xu ZR, Liu GJ et al (2010) Differential expression of copper-zinc superoxide dismutase gene of Polygonum sibiricum leaves, stems and underground stems, subjected to high-salt stress. Int J Mol Sci 11:5234–5245

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805–7812

    Article  PubMed  CAS  Google Scholar 

  • Robert F, Chaussidon M (2006) A paleotemperature curve for the Precambrian oceans based on silicon isotopes in chert. Nature 443:969–972

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (1994) The oldest known records of life: stromatolites, microfossils, and organic matter from the early Archaean of South Africa and Western Australia. In: Bengtsen S (ed) Early life on earth. Columbia Univ Press, NY, pp 193–206

    Google Scholar 

  • Schopf JW (2011) The paleobiological record of photosynthesis. Photosynth Res 107:87–101

    Article  CAS  Google Scholar 

  • Shaw MF (1929) A microchemical analysis study of the fruit coat of Nelumbo lutea. Am J Bot 16:259–276

    Article  CAS  Google Scholar 

  • Shen-Miller J, Mudgett MB, Schopf JW et al (1995) Exceptional seed longevity and robust growth: ancient sacred lotus from China. Am J Bot 82(11):1367–1380

    Article  Google Scholar 

  • Shen-Miller J, Schopf JW, Harbottle G et al (2002) Long-living lotus: germination and soil γ-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormality of offspring. Am J Bot 89(2):236–247

    Article  PubMed  CAS  Google Scholar 

  • Shen-Miller J, Aung LH, Turek J, Schopf JW, Tholandi M, Yang M, Czaja A (in press) Centuries-old viable fruit of Sacred Lotus Nelumbo nucifera Gaertn var. China Antique. Trop Plant Biol

  • Shevchenko A, Wilm M, Vorm, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gells. Annal Chem 68:850–858

    Article  CAS  Google Scholar 

  • Small T, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4(6):1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158

    Article  CAS  Google Scholar 

  • Tatsuka M, Mitsui H, Wada M et al (1992) Elongation factor-1 alpha gene determines susceptibility to transformation. Nature 359(6393):333–336

    Article  PubMed  CAS  Google Scholar 

  • Tele Images-Nature (2003) Eternal Seeds, a documentary of Nelumbo nucifera: Xipaozi, China, USA, Japan & Africa. In: Power Plants (Series #4). Dir L. Frapat, Assist Dir I. Han, Camera P. Moreau, Sound P. Fleurant. Paris, France, 50 min

  • Thapar N, Kim AK, Clarke S (2001) Distinct patterns of expression but similar biochemical properties of protein L-isoaspartyl methyltransferase in higher plants. Plant Physiol 125(2):1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Thirumalia D, Lorimer G (2001) Chaperonine-mediated protein folding. Ann Rev Biophys Biochem Struc 30:245–269

    Article  Google Scholar 

  • Tiedmann J, Neubohn B, Muntz K (2000) Different functions of vicilin and legumin are reflected in the histopattern of globulin mobilization during germination of vetch (Vicia sativa L.). Planta 211:1–12

    Article  Google Scholar 

  • Towbin H, Staehlin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures ans some applications. Proc Nat Acad Sci (USA) 76:4350–4354

    Article  CAS  Google Scholar 

  • Unsworth LD, Van Der Ost J, Koutsopoulos S (2007) Hyperthermopholic enzymes – stability, activity and implementation strategies for high temperature applications. FESB J 274:4044–4056

    CAS  Google Scholar 

  • Van Der Straeten D, Rodrigues-Pousada A, Goodman HM, Van Montagu M (1991) Plant enolase: gene structure, experession, and evolution. Plant Cell 3:719–735

    PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophlic enzyme sources, uses, and molecular mechanisms for thermostability. Microbiol Mole Biol Rev 65(1):1–43

    Google Scholar 

  • Viitanen PV, Schmidt M, Bucher J et al (1995) Functional characterization of the higher plant chloroplast chaperonins. J Biol Chem 270:18158–18164

    Article  PubMed  CAS  Google Scholar 

  • Villa ST, Xu Q, Downie AB, Clarke SG (2006) Arabidopsis protein repair L-isoaspartyl methyltrransferase: predominant activities at lethal temperatures. Physiol Plant 128:581–592

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Belcastrp MP, Villa ST et al (2004) A second protein L-isoaspartyl transferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. Pl Physiol 136:2652–2664

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for valuable suggestions, C. Haas-Blaby for bioinformatics and protein alignments, J.W. Schopf for constructive comments, J. Lowenson for helpful discussions, and H. Nguyen for compilation assistance of the MS data. For antisera, we are grateful to P. Viitanen for CPN20 and CPN60, T. Close for dehydrin, and B. Downie and D. Martin for PIMT1. Work in SGC laboratory is supported by NIH grant GM206020. We also thank K.O. Stetter whose seminal research on hyperthermophiles stimulated this ‘hot protein’ study of Nelumbo enzymes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shen-Miller.

Additional information

Communicated by Yuval Cohen

J. Shen-Miller for manuscript preparation, overall experimentation and coordination; P. Lindner for initiation of thermal-protein experiments; Y. Xie, K. Wooding, R.R.O. Loo, and J. A. Loo for protein mass-spectrometry; and S. Villa and S. G. Clarke for PIMT experiments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 88 kb)

ESM 2

(PDF 104 kb)

Fig. S-1a

(JPEG 78 kb)

High Resolution Image (TIFF 23439 kb)

Fig. S-1b

(JPEG 105 kb)

High Resolution Image (TIFF 24135 kb)

Fig. S-1c

(JPEG 117 kb)

High Resolution Image (TIFF 24056 kb)

Fig. S-1d

(JPEG 211 kb)

High Resolution Image (TIFF 25985 kb)

Fig. S-1e

(JPEG 261 kb)

High Resolution Image (TIFF 25907 kb)

Fig. S-1f

(JPEG 266 kb)

High Resolution Image (TIFF 25670 kb)

Fig. S-1g

(JPEG 267 kb)

High Resolution Image (TIFF 26021 kb)

Fig. S-1g

(JPEG 49 kb)

High Resolution Image (TIFF 23087 kb)

Fig. S-1h

(JPEG 262 kb)

High Resolution Image (TIFF 26058 kb)

Fig. S-1h

(JPEG 88 kb)

High Resolution Image (TIFF 23541 kb)

Fig. S-1i

(JPEG 243 kb)

High Resolution Image (TIFF 24382 kb)

Fig. S-1i

(JPEG 24 kb)

High Resolution Image (TIFF 22649 kb)

Fig. S-1j

(JPEG 218 kb)

High Resolution Image (TIFF 24875 kb)

Fig. S-1k

(JPEG 262 kb)

High Resolution Image (TIFF 25507 kb)

Fig. S-1k

(JPEG 284 kb)

High Resolution Image (TIFF 26394 kb)

Fig. S-1k

(JPEG 137 kb)

High Resolution Image (TIFF 24358 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen-Miller, J., Lindner, P., Xie, Y. et al. Thermal-Stable Proteins of Fruit of Long-Living Sacred Lotus Nelumbo nucifera Gaertn var. China Antique. Tropical Plant Biol. 6, 69–84 (2013). https://doi.org/10.1007/s12042-013-9124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-013-9124-2

Keywords

Navigation