Skip to main content
Log in

Understanding the convoluted evolutionary history of the capped-golden langur lineage (Cercopithecidae: Colobinae)

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The phylogenetic position of the capped and golden langur (CG) lineage has been ambiguous owing to the discordance between phylogenies from multiple molecular markers. Previous molecular studies have hypothesised that this discordance likely arises from either a hybridization event that took place between the Indian genus Semnopithecus and the Southeast Asian genus Trachypithecus or from incomplete lineage sorting (ILS). Distinguishing between hybridization and ILS is challenging and these processes can lead to serious difficulties in inferring phylogenies. In this study, we used genetic markers (nine nuclear and eight mitochondrial) in conjunction with coalescent based species tree approach and a test for hybridization using posterior predictive checking to better understand the evolutionary origin of the CG lineage. Both the concatenated nuclear as well as the mitochondrial dataset recovered congruent relationships where CG lineage was sister to Trachypithecus. However, nuclear species tree estimated using different multispecies coalescent methods suggested an opposite result, i.e. CG lineage was sister to Semnopithecus. Hybridization analysis strongly indicates gene flow between Semnopithecus and Trachypithecus that likely gave rise to the hybrid CG lineage. Further, the CG lineage is morphologically intermediate between Semnopithecus and Trachypithecus with respect to skull and body measurements. In light of the above evidences, we argue that the CG lineage needs to be elevated to a new genus of its own. Taxonomic and conservation implications of these results are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abdul-latiff M. A. B., Baharuddin H., Abdul-patah P. and Md-zain B. M. 2018 Is Malaysia’s banded langur, Presbytis femoralis femoralis, actually Presbytis neglectus neglectus? Taxonomic revision with new insights on the radiation history of the Presbytis species group in Southeast Asia. Primates 60, 63–79.

    Article  PubMed  Google Scholar 

  • Arekar K., Sathyakumar S. and Karanth K. P. 2021 Integrative taxonomy confirms the species status of the Himalayan langurs, Semnopithecus schistaceus Hodgson 1840. J. Zool. Syst. Evol. Res. 59, 543–556.

    Article  Google Scholar 

  • Arnold M. L. and Meyer A. 2006 Natural hybridisation in primates: One evolutionary mechanism. Zoology 109, 261–276.

    Article  PubMed  Google Scholar 

  • Ashalakshmi N. C., Nag K. S. C. and Karanth K. P. 2014 Molecules support morphology: species status of South Indian populations of the widely distributed Hanuman langur. Conserv. Genet. 16, 43–58.

    Article  Google Scholar 

  • Bensasson D., Zhang D. X., Hartl D. L. and Hewitt G. M. 2001 Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecology Evol. 16, 314–321.

    Article  CAS  Google Scholar 

  • Blanchard J. L. and Lynch M. 2000 Organellar genes: why do they end up in the nucleus? Trends Genet. 16, 315–320.

    Article  CAS  PubMed  Google Scholar 

  • Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C. H., Xie D. et al. 2014 BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, 1–6.

    Article  Google Scholar 

  • Bouckaert R., Vaughan T. G., Barido-Sottani J., Duchene S., Fourment M., Gavryushkina A. et al. 2019 BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandon-Jones D., Eudey A. A., Geissmann T., Groves C. P., Melnick D. J., Morales J. C. et al. 2004 Asian primate classification. Int. J. Primatol. 25, 97–164.

    Article  Google Scholar 

  • Charlesworth B. 2009 Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205.

    Article  CAS  PubMed  Google Scholar 

  • Chivers D. J. and Hladik C. M. 1980 Morphology of the gastrointestinal tract in primates: Comparisons with other mammals in relation to diet. J. Morphol. 166, 337–386.

    Article  CAS  PubMed  Google Scholar 

  • Chou J., Gupta A., Yaduvanshi S., Davidson R., Nute M., Mirarab S. and Warnow T. 2015 A comparative study of SVDquartets and other coalescent-based species tree estimation methods. BMC Genomics 16, 1–11.

    Article  Google Scholar 

  • Davenport T. R. B., Stanley W. T., Sargis E. J., De Luca D. W., Mpunga N. E., Machaga S. J. and Olson L. E. 2006 A new genus of African monkey, Rungwecebus: morphology, ecology, and molecular phylogenetics. Science 312, 1372–1374.

    Article  Google Scholar 

  • Degnan J. H. and Rosenberg N. A. 2006 Discordance of species trees with their most likely gene trees: A unifying principle. PLoS Genet. 3, 762–768.

    Google Scholar 

  • Doolittle F. W. 1998 You are what you eat: A gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 14, 307–311.

    Article  CAS  PubMed  Google Scholar 

  • Doyle J. J. 1992 Gene trees and species trees: molecular systematics as one-character Taxonomy. Syst. Bot. 17, 144–163.

    Article  Google Scholar 

  • Dunbar R. I. M. and Dunbar P. 1974 On hybridisation between Theropithecus gelada and Papio anubis in the wild. J. Hum. Evol. 3, 187–192.

    Article  Google Scholar 

  • Edgar R. C. 2004 MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnett S. T. and Christidis L. 2017 Taxonomy anarchy hampers conservation. Nature 546, 25–27.

    Article  CAS  PubMed  Google Scholar 

  • Groves C. P. 2001 Primate Taxonomy, Smithsonian Institution Press, Washington.

    Google Scholar 

  • Heled J., Bouckaert R., Drummond A. J. and Xie W. 2013 * BEAST in BEAST 2.0: Estimating Species Trees from Multilocus Data. Retrieved from https://doi.org/10.1371/journal.pcbi.1003537.s006.

  • Hillis D. M. 1996 Molecular systematics, Sinauer Associates.

    Google Scholar 

  • Joly S., McLenachan P. A. and Lockhart P. J. 2009 A statistical approach for distinguishing hybridisation and incomplete lineage sorting. Am. Nat. 174, E54–E70.

    Article  PubMed  Google Scholar 

  • Joly S., Pfeil B. E., Oxelman B., Mclenachan P. A. and Lockhart P. J. 2010 Correction. Am. Nat. 175, 621–622.

    Article  Google Scholar 

  • Joly S. 2012 JML: testing hybridisation from species trees. Mol. Ecol. Resour. 12, 179–184.

    Article  PubMed  Google Scholar 

  • Jones T., Ehardt C. L., Butynski T. M., Davenport T. R. B., Mpunga N. E., Machaga S. J. and De Luca D. W. 2005 The highland mangabey Lophocebus kipunji: A New Species of African Monkey. Science 308, 1161–1165.

    Article  CAS  PubMed  Google Scholar 

  • Karanth K. P. 2008 Primate numts and reticulate evolution of capped and golden leaf monkeys (Primates: Colobinae). J. Biosci. 33, 761–770.

    Article  CAS  PubMed  Google Scholar 

  • Karanth K. P., Sing L., Collura R. V. and Stewart C.-B. 2008 Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae). Mol. Phylogenet. Evol. 46, 683–694.

    Article  CAS  PubMed  Google Scholar 

  • Karanth K. P. 2010 Molecular systematics and conservation of the langurs and leaf monkeys of South Asia. J. Genet. 89, 393–399.

    Article  PubMed  Google Scholar 

  • Kishore R., Reef Hardy W., Anderson V. J., Sanchez N. A. and Buoncristiani M. R. 2006 Optimization of DNA extraction from low-yield and degraded samples using the BioRobot EZ1 and BioRobot M48. J. Forensic Sci. 51, 1055–1061.

    Article  CAS  PubMed  Google Scholar 

  • Kuang W., Ming C., Li H., Wu H., Frantz L., Roos C. et al. 2018 The origin and population history of the endangered golden snub-nosed monkey (Rhinopithecus roxellana). Mol. Biol. Evol. 36, 487–499.

    Article  Google Scholar 

  • Kubatko L. S. 2009 Identifying hybridisation events in the presence of coalescence via model selection. Syst. Biol. 58, 478–488.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A. and Solanki G. S. 2008 Population status and conservation of capped langurs (Trachypithecus pileatus) in and around Pakke Wildlife Sanctuary, Arunachal Pradesh, India. Primate Conserv. 23, 97–105.

    Article  Google Scholar 

  • Lanfear R., Calcott B., Ho S. Y. W. and Guindon S. 2012 PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701.

    Article  CAS  PubMed  Google Scholar 

  • Mace G. M. 2004 The role of taxonomy in species conservation. Philos. Trans. R. Soc. B Biol. Sci. 359, 711–719.

    Article  Google Scholar 

  • Maddison W. 1997 Gene trees in species trees. Syst. Biol. 46, 523–536.

    Article  Google Scholar 

  • McGuire G. and Wright F. 2000 TOPAL 2.0: improved detection of mosaic sequences within multiple alignments. Bioinformatics 16, 130–134.

    Article  CAS  PubMed  Google Scholar 

  • Milne I., Lindner D., Bayer M., Husmeier D., Mcguire G., Marshall D. F. and Wright F. 2009 TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25, 126–127.

    Article  CAS  PubMed  Google Scholar 

  • Mirarab S. and Warnow T. 2015 ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31, 44–52.

    Article  Google Scholar 

  • Mondol S., Ullas Karanth K., Samba Kumar N., Gopalaswamy A. M., Andheria A. and Ramakrishnan U. 2009 Evaluation of non-invasive genetic sampling methods for estimating tiger population size. Biol. Conserv. 142, 2350–2360.

    Article  Google Scholar 

  • Nijman V. 2020 Presbytis neglectus or P. femoralis, colobine molecular phylogenies, and GenBank submission of newly generated DNA sequences. Folia Primatol. 91, 228–239.

    Article  Google Scholar 

  • Oates J. F., Davies A. G. and Delson E. 1994 The diversity of living colobines. In Colobine monkeys: their ecology, behaviour and evolution (ed. A. G. Davies and J. F. Oates) pp. 45–73. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Ogilvie H. A., Bouckaert R. R. and Drummond A. J. 2017 StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evol. 34, 2101–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osterholz M., Walter L. and Roos C. 2008 Phylogenetic position of the langur genera Semnopithecus and Trachypithecus among Asian colobines, and genus affiliations of their species groups. BMC Evol. Biol. 8, 1–12.

    Article  Google Scholar 

  • Pan R., Groves C. and Oxnard C. 2004 Relationships between the fossil colobine Mesopithecus pentelicus and extant cercopithecoids, based on dental metrics. Am. J. Primatol. 62, 287–299.

    Article  PubMed  Google Scholar 

  • Pastorini J., Zaramody A., Curtis D. J., Nievergelt C. M. and Mundy N. I. 2009 Genetic analysis of hybridisation and introgression between wild mongoose and brown lemurs. BMC Evol. Biol. 9, 1–13.

    Article  Google Scholar 

  • Peng Y., Pan R., Ye Z. and Wang H. 1991 Comaparative study on cranioface and brain case in Asian colobines. Acta Anthropol. Sin. 10, 346–356.

    Google Scholar 

  • Perelman P., Johnson W. E., Roos C., Seuánez H. N., Horvath J. E., Moreira M. A. M. et al. 2011 A molecular phylogeny of living primates. PLoS Genet. 7, e1001342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips-conroy J. E. and Jolly C. J. 1981 Sexual dimorphism in two subspecies of ethiopian baboons (Papio hamadryas) and their hybrids. Am. J. Physical Anthropol. 56, 115–129.

    Article  CAS  Google Scholar 

  • Raaum R. L., Sterner K. N., Noviello C. M., Stewart C.-B. and Disotell T. R. 2005 Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J. Hum. Evol. 48, 237–257.

    Article  PubMed  Google Scholar 

  • Rabarivola C., Meyers D. and Rumpler Y. 1991 Distribution and morphological characters of intermediate forms between the black lemur (Eulemur macaco macaco) and the Sclater’s lemur (E. m. flavifrons). Primates 32, 269–273.

    Article  Google Scholar 

  • Ram M. S., Kittur S. M., Biswas J., Nag S., Shil J. and Umapathy G. 2016 Genetic diversity and structure among isolated populations of the endangered gees golden langur in Assam, India. PLoS One 11, e0161866.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rambaut A. and Grassly N. C. 1997 Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13, 235–238.

    CAS  PubMed  Google Scholar 

  • Rambaut A., Suchard M. A., Xie D. and Drummond A. J. 2013 Tracer v1.6. beast.bio.ed.ac.uk/software/tracer/.

  • Reaz R., Bayzid M. S. and Rahman M. S. 2014 Accurate phylogenetic tree reconstruction from quartets: A heuristic approach. PLoS One 9, e104008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritchie A. M., Lo N. and Ho S. Y. W. 2017 The impact of the tree prior on molecular dating of data sets containing a mixture of inter- and intraspecies sampling. Syst. Biol. 66, 413–425.

    PubMed  Google Scholar 

  • Ronquist F., Teslenko M., Van Der Mark P., Ayres D. L., Darling A., Höhna S. et al. 2012 Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roos C., Zinner D., Kubatko L. S., Schwarz C., Yang M., Meyer D. et al. 2011 Nuclear versus mitochondrial DNA: evidence for hybridisation in colobine monkeys. BMC Evol. Biol. 11, 77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roos C., Boonratna R., Supriatna J., Fellowes J. R., Groves C. P., Nash S. D. et al. 2014 An updated taxonomy and conservation status review of Asian primates. Asian Primates J. 4.

  • Sarver B. A. J., Pennell M. W., Brown J. W., Keeble S., Hardwick K. M., Sullivan J. and Harmon L. J. 2019 The choice of tree prior and molecular clock does not substantially affect phylogenetic inferences of diversification rates. Peer J. 7, e6334.

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava A. and Mohnot S. M. 2001 Distribution, Conservation status and priorities for primates in northeast India. ENVIS Bull. Wildlife Protected Areas 1, 102–108.

    Google Scholar 

  • Stamatakis A. 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.

    Article  CAS  PubMed  Google Scholar 

  • Sterner K. N., Raaum R. L., Zhang Y. P., Stewart C.-B. and Disotell T. R. 2006 Mitochondrial data support an odd-nosed colobine clade. Mol. Phylogenet. Evol. 40, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Swofford D. 2001 PAUP*—phylogenetic analysis using parsimony and other methods, Version 4, Sinauer Associates, Sunderland.

    Google Scholar 

  • Takai M., Nishioka Y., Thaung-Htike Maung M., Khaing K., Zin-Maung-Maung-Thein et al. 2016 Late Pliocene Semnopithecus fossils from central Myanmar: rethinking of the evolutionary history of cercopithecid monkeys in Southeast Asia. Hist. Biol. 28, 172–188.

    Article  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. 2011 MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson S. A., Pyle R. L., Ahyong S. T., Alonso-zarazaga M., Ammirati J., Araya J. F. et al. 2018 Taxonomy based on science is necessary for global conservation. PLoS Biol. 16, e2005075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ting N., Tosi A. J., Li Y., Zhang Y.-P. and Disotell T. R. 2008 Phylogenetic incongruence between nuclear and mitochondrial markers in the Asian colobines and the evolution of the langurs and leaf monkeys. Mol. Phylogenet. Evol. 46, 466–474.

    Article  CAS  PubMed  Google Scholar 

  • Wang B., Zhou X., Shi F., Liu Z., Roos C., Garber P. A. et al. 2015 Full-length Numt analysis provides evidence for hybridisation between the Asian colobine genera Trachypithecus and Semnopithecus. Am. J. Primatol. 77, 901–910.

    Article  CAS  PubMed  Google Scholar 

  • Wang X. P., Yu L., Roos C., Ting N., Chen C. P., Wang J. and Zhang Y. P. 2012 Phylogenetic relationships among the colobine monkeys revisited: new insights from analyses of complete mt genomes and 44 nuclear non-coding markers. PLoS One 7, e36274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X. P., Zhang Y. P. and Yu L. 2013 Summary of phylogeny in subfamily Colobinae (Primate: Cercopithecidae). Chin. Sci. Bull. 58, 2097–2103.

    Article  Google Scholar 

  • Wangchuk T., Inouye D. W. and Hare M. P. 2008 The emergence of an endangered species: evolution and phylogeny of the Trachypithecus geei of Bhutan. Int. J. Primatol. 29, 565–582.

    Article  Google Scholar 

  • Yang Z. 2007 MCMCcoal: Markov chain monte carlo coalescent program, University College London, London.

    Google Scholar 

  • Zhang Y. Z., Wang S. and Quan G. Q. 1981 On the geographical distribution of primates in China. J. Hum. Evol. 10, 219–226.

    Article  Google Scholar 

  • Zinner D., Arnold M. L. and Roos C. 2011 The strange blood: natural hybridisation in primates. Evol. Anthropol. 20, 96–103.

    Article  PubMed  Google Scholar 

  • Zinner D., Chuma I. S., Knauf S. and Roos C. 2018 Inverted intergeneric introgression between critically endangered kipunjis and yellow baboons in two disjunct populations. Biol. Lett. 14, 20170729.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Department of Biotechnology, Govt. of India for the funding to carry out this research. We also thank the Ministry of Environment Forest and Climate Change for the funds that covered a part of fieldwork for this study. The forest department of Assam provided the permits to collect samples. We thank Guwahati zoo and its members for help during sample collection. Dr Senthil Kumar and Dr H. T. Lalremsanga from Mizoram University for providing samples from Tripura zoo and Mizoram zoo. Dr G. Umapathy from LaCONES, CCMB for help in sample collection from Hyderabad zoo. KA would like to thank Mr Rajani Deka and Mr Firoz Ahmed for support during field work. Aniruddha Datta-Roy, Aparna Lajmi, Ishan Agarwal and V. Deepak for comments on the manuscript. Bhavani from CES for help in accounting. We also thank anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Arekar.

Additional information

Corresponding editor: T. N. C. Vidya

This is one of the articles of collections on ‘Conservation Genetics’.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arekar, K., Parigi, A. & Karanth, K.P. Understanding the convoluted evolutionary history of the capped-golden langur lineage (Cercopithecidae: Colobinae). J Genet 100, 79 (2021). https://doi.org/10.1007/s12041-021-01329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01329-8

Keywords

Navigation