Skip to main content
Log in

Gene structure, SNP screening and growth correlation analysis of the preproinsulin gene in grass carp (Ctenopharyngodon idellus)

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The preproinsulin gene encodes a precursor protein of insulin, which is the most important hormone for lowering blood glucose levels and promoting the synthesis of glycogen, fat and protein. To explore the correlation between polymorphisms in the preproinsulin gene and growth traits in grass carp, the preproinsulin gene sequence, measuring a total of 5708 bp, was identified in the grass carp genome. The sequence includes a promoter, two introns and three exons, and encodes a 108-aa protein. A total of three SNPs were identified, including SNP1 (g.-2661C > G) in the promoter and SNP2 (g.1305G > C) and SNP3 (g.1682G > A) in intron 2. The correlation between SNPs and growth traits in grass carp was analysed by a general linear model (GLM). The results indicated that no genotype in each single SNP, SNP1 with SNP2, or SNP1 with SNP3 was related to rapid growth and low fatness, respectively. While eight genotypes of SNP1, SNP2 and SNP3 were combined into six types of effective diplotypes, the H5 diplotype was significantly superior to the other diplotypes (P < 0.05) concerning body weight, body length, body height and body width, and its fatness was lower than those of the other diplotypes, except for H6 diplotype. This result indicated that the H5 diplotype of the preproinsulin gene in grass carp may be a candidate molecular marker for selecting fast-growing and low-fatness grass carp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bachl J., Olsson C., Chitkara N. and Wabl M. 1998 The Ig mutator is dependent on the presence, position, and orientation of the large intron enhancer. Proc. Natl. Acad. Sci. USA 95, 2396–2399.

    Article  CAS  Google Scholar 

  • Caruso M. A. and Sheridan M. A. 2011 New insights into the signaling system and function of insulin in fish. Gen. Comp. Endocr. 173, 227–247.

    Article  CAS  Google Scholar 

  • Chang X., Joergensen A. M., Bardrum P. and Led J. J. 1997 Solution structures of the R6 human insulin hexamer. Biochemistry 36, 9409–9422.

    Article  CAS  Google Scholar 

  • Clarke W. L., Vance M. L. and Rogol A. D. 1993 Growth and the child with diabetes mellitus. Diabetes Care 16, 101–106.

    Article  Google Scholar 

  • Conlon J. M., Fan H. and Fritzsch B. 1998 Purification and structural characterization of insulin and glucagon from the bichir polypterus senegalis (Actinopterygii: Polypteriformes). Gen. Comp. Endocrinol. 109, 86–93.

    Article  CAS  Google Scholar 

  • Darriba D., Taboada G. L., Doallo R. and Posada D. 2011 ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165.

    Article  CAS  Google Scholar 

  • De Pablo F. and De La Rosa E. J. 1995 The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends. Neurosci. 18, 143–150.

    Article  Google Scholar 

  • Dong J., Chen Z., Sun C., Tian Y., Hu J., Lu M. et al. 2019 Cloning, SNP detection, and growth correlation analysis of the 5′ flanking regions of two myosin heavy chain-7 genes in mandarin fish (Siniperca chuatsi). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 228, 10–16.

    Article  CAS  Google Scholar 

  • Duan C. and Hirano T. 1992 Effects of insulin-like growth factor-I and insulin on the in-vitro uptake of sulphate by Eel Branchial Cartilage: evidence for the presence of independent hepatic and pancreatic sulphation factors. J. Endocrinol. 133, 211–219.

    Article  CAS  Google Scholar 

  • Enes P., Sanchez-Gurmaches J., Navarro I., Gutiérrez J. and Oliva-Teles A. 2010 Role of insulin and IGF-I on the regulation of glucose metabolism in European sea bass (Dicentrarchus labrax) fed with different dietary carbohydrate levels. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 157, 346–353.

    Article  CAS  Google Scholar 

  • Fishery Bureau of the Ministry of Agriculture. 2020 China fishery statistics yearbook 2019, p. 25. China Agriculture Press, Beijing (in Chinese).

  • Hahn V., Winkler J., Rapoport T. A., Liebscher D. H., Coutelle C. and Rosenthal S. 1983 Carp preproinsulin cDNA sequence and evolution of insulin genes. Nucleic Acids Res. 11, 4541–4552.

    Article  CAS  Google Scholar 

  • Kim K. S., Larsen N., Short T., Plastow G. and Rothschild M. F. 2000 A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm. Cenome. 11, 12–16.

    Google Scholar 

  • Kong X. J., Liu X. L., Wu Y. and Wang J. 2008 Genetic variance of duck preproinsulin gene and its correlations to the traits of carcasses. Hereditas (Beijing) 30, 760–764 (in Chinese).

    Article  CAS  Google Scholar 

  • Li S. F. 1998 Genetic characterization of major freshwater culture fishes in China, pp. 91–96. Shanghai Scientifific and Technical Publishers, Shanghai (in Chinese).

  • Li X., Bai J., Hu Y., Ye X., Li S. and Yu L. 2012 Genotypes, haplotypes and diplotypes of IGF-II SNPs and their association with growth traits in largemouth bass (Micropterus salmoides). Mol. Biol. Rep. 39, 4359–4365.

    Article  CAS  Google Scholar 

  • Ma D. M., Han L. Q., Bai J. J., Li S. J., Fan J. J., Yu L. Y. et al. 2014 A 66-bp deletion in growth hormone releasing hormone gene 5´-flanking region with largemouth bass recessive embryonic lethal. Anim. Genet. 45, 421–426.

    Article  CAS  Google Scholar 

  • Montserrat N., Gabillard J. C., Capilla E., Navarro M. I. and Gutiérrez J. 2007 Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss). Gen. Comp. Endocr. 150, 462–472.

    Article  CAS  Google Scholar 

  • Moon T. W. 2001 Glucose intolerance in teleost fish: fact or fiction? Comp. Biochem. Physiol. B Biochem. Mol. Biol. 129, 243–249.

    Article  CAS  Google Scholar 

  • Nott A., Meislin S. H. and Moore M. J. 2003 A quantitative analysis of intron effects on mammalian gene expression. RNA 9, 607–617.

    Article  CAS  Google Scholar 

  • Oscarson M., Hidestrand M., Johansson I. and Ingelman-Sundberg M. 1997 A combination of mutations in the cyp2d6*17 (cyp2d6z) allele causes alterations in enzyme function. Mol. Pharmacol. 52, 1034–1040.

    Article  CAS  Google Scholar 

  • Pagani F. and Baralle F. E. 2004 Genomic variants in exons and introns: identifying the splicing spoilers. Nat. Rev. Genet. 5, 389–396.

    Article  CAS  Google Scholar 

  • Polakof S., Panserat S., Soengas J. L. and Moon T. W. 2012 Glucose metabolism in fish: a review. J. Comp. Physiol. B. 182, 1015–1045.

    Article  CAS  Google Scholar 

  • Shi M. and Feng Y. M. 1997 The growth promoting effects of insulin. Prog. Biochem. Biophys. 24, 215–219.

    CAS  Google Scholar 

  • Simon J., Laurent S., Grolleau G., Thoraval P., Soubieux D. and Rasschaert D. 2004 Evolution of preproinsulin gene in birds. Mol. Phylogenet. Evol. 30, 755–766.

    Article  CAS  Google Scholar 

  • Steiner D. F. 1977 Insulin today. Diabetes 26, 322–340.

    Article  CAS  Google Scholar 

  • Steiner D. F., Cunningham D., Spigelman L. and Aten B. 1967 Insulin biosynthesis: evidence for a precursor. Science 157, 697–700.

    Article  CAS  Google Scholar 

  • Steiner D. F., Chan S. J., Welsh J. M. and Kwok S. C. M. 1985 Structure and evolution of the insulin gene. Ann. Rev. Genet. 19, 463–484.

    Article  CAS  Google Scholar 

  • Stephens M., Smith N. J. and Donnelly P. 2001 A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989.

    Article  CAS  Google Scholar 

  • Støy J., Edghill E. L., Flanagan S. E., Ye H., Paz V. P., Pluzhnikov A. et al. 2007 Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl. Acad. Sci. USA 104, 15040–15044.

    Article  Google Scholar 

  • Støy J., Steiner D. F., Park S., Ye H., Philipson L. H. and Bell G. I. 2010 Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev. Endocr. Metab. Disord. 11, 205–215.

    Article  Google Scholar 

  • Straus D. S. 1984 Growth-stimulatory actions of insulin in vitro and in vivo. Endocr. Rev. 5, 356–369.

    Article  CAS  Google Scholar 

  • Sun C. F., Sun H. L., Dong J. J., Tian Y. Y. and Ye X. 2019 Correlation analysis of mandarin fish (Siniperca chuatsi) growth hormone gene polymorphisms and growth traits. J. Genet. 98, 58.

    Article  Google Scholar 

  • Tamura K., Dudley J., Nei M. and Kumar S. 2007 MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  Google Scholar 

  • Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. and Higgins D. G. 1997 The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  • Tsai H. Y., Hamilton A., Guy D. R. and Houston R. D. 2014 Single nucleotide polymorphisms in the insulin-like growth factor 1 (IGF1) gene are associated with growth-related traits in farmed Atlantic salmon. Anim. Genet. 45, 709–715.

    Article  CAS  Google Scholar 

  • Wang Y., Lu Y., Zhang Y., Ning Z., Li Y., Zhao Q. et al. 2015 The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat. Genet. 47, 625–631.

    Article  CAS  Google Scholar 

  • Wilson R. P. 1994 Utilization of dietary carbohydrate by fish. Aquaculture 124, 67–80.

    Article  CAS  Google Scholar 

  • Xu Y., Peng G., Sun M., Li J., Yan W., Tang J. et al. 2019 Genomic organization of the molt-inhibiting hormone gene in the red swamp crayfish Procambarus clarkii and characterization of single-nucleotide polymorphisms associated with growth. Comput. Biochem. Physiol. B Biochem. Mol. Biol. 237, 1–8.

    Google Scholar 

  • Yu L. Y., Bai J. J., Fan J. J., Ma D. M., Quan Y. C. and Jiang P. 2015 Transcriptome analysis of the grass carp (Ctenopharyngodon idella) using 454 pyrosequencing methodology for gene and marker discovery. Genet. Mol. Res. 14, 19249–19263.

    Article  CAS  Google Scholar 

  • Zhou S. X., Xie J. M., Sun X. and Lu Z. H. 2003 Comparison and analysis of insulin sequences and their coded mRNA and DNA among different species. J. Southeast Univ. 33, 292–295 (in Chinese).

    CAS  Google Scholar 

  • Zhu W. Q., Chen W. F., Song W. T., Song C., Hu Y., Li H. F. et al. 2014 Study on single nucleotide polymorphism of preproinsulin gene in duck. Anim. Hus. Vet. Med. 46, 40–42 (in Chinese).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31902365). We thank the Foshan Sanshui Baijin Aquatic Varieties Limited Company in Guangdong Province of China for assistance with grass carp sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Ma.

Additional information

Corresponding editor: Punyasloke Bhadury

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Ma, D., Zhu, H. et al. Gene structure, SNP screening and growth correlation analysis of the preproinsulin gene in grass carp (Ctenopharyngodon idellus). J Genet 100, 48 (2021). https://doi.org/10.1007/s12041-021-01289-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01289-z

Keywords

Navigation