Skip to main content
Log in

Association of lncRNA PRNCR1 polymorphisms with cancer susceptibility: a meta-analysis of the current literature

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Considerable studies exploring the relevance of single-nucleotide polymorphisms (SNPs) in the prostate cancer noncoding RNA 1 (PRNCR1) gene with various cancer susceptibilities have obtained debatable results. This meta-analysis was performed to precisely assess this association. Relevant published studies were selected by retrieving studies from PubMed, Embase, Web of Science, CNKI and Chinese Wanfang databases. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were applied to evaluate the strength of PRNCR1 polymorphisms correlated with cancer susceptibility. A total of 12 articles, containing 40 independent case–control studies and seven SNPs (rs1016343, rs13252298, rs16901946, rs7007694, rs1456315, rs13254738 and rs7463708), were ultimately included in our meta-analysis. Summary results revealed a significant association with an increased overall risk of cancer for the rs1016343 C>T polymorphism (T vs C: OR=1.19, 95% CI=1.02–1.39; TT+CT vs CC: OR= 1.25, 95% CI=1.05–1.49) and rs16901946 A>G polymorphism (G vs A: OR=1.17, 95% CI=1.09–1.27; GG+AG vs AA: OR=1.20, 95% CI=1.09–1.32). Moreover, evidence of the rs13252298 A>G polymorphism correlation with decreased overall risk of cancer was observed (GG vs AG+AA: OR=0.78, 95% CI =0.67–0.92). Subgroup analyses by cancer type and ethnicity also revealed that the rs1016343 C>T polymorphism was linked with an increased risk of prostate cancer and Caucasians, respectively. The rs13252298 A>G polymorphism was correlated with a decreased risk of colorectal cancer and prostate cancer. The rs16901946 A>G polymorphism was related to an increased risk of gastric cancer and colorectal cancer in Asians. Additionally, the rs13254738 A>C polymorphism was correlated with reduced cancer risk in Asians. No correlations were discovered with cancer risk in rs7007694 T>C, rs7463708 T>G, and rs1456315 A>G polymorphisms. In summary, our meta-analysis indicates that PRNCR1 rs1016343, rs16901946 and 13252298 polymorphisms are associated with cancer susceptibility. Further large-scale studies are required to certify our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • AlMutairi M., Parine N. R., Shaik J. P., Aldhaian S., Azzam N. A., Aljebreen A. M. et al. 2019 Association between polymorphisms in PRNCR1 and risk of colorectal cancer in the Saudi population. PLoS One 14, e0220931.

    Article  CAS  Google Scholar 

  • Cheetham S. W., Gruhl F., Mattick J. S. and Dinger M. E. 2013 Long noncoding RNAs and the genetics of cancer. Br. J. Cancer 108, 2419–2425.

    Article  CAS  Google Scholar 

  • Cheng D., Bao C., Zhang X., Lin X., Huang H. and Zhao L. 2018 LncRNA PRNCR1 interacts with HEY2 to abolish miR-448-mediated growth inhibition in non-small cell lung cancer. Biomed. Pharmacother. 107, 1540–1547.

    Article  CAS  Google Scholar 

  • Chu H., Chen Y., Yuan Q., Hua Q., Zhang X., Wang M. et al. 2017 The HOTAIR, PRNCR1 and POLR2E polymorphisms are associated with cancer risk: a meta-analysis. Oncotarget 8, 43271–43283.

    Article  Google Scholar 

  • Chung S., Nakagawa H., Uemura M., Piao L., Ashikawa K., Hosono N. et al. 2011 Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci. 102, 245–252.

    Article  CAS  Google Scholar 

  • Do H. and Kim W. 2018 Roles of oncogenic long non-coding RNAs in cancer development. Genomics Inform. 16, e18.

    Article  Google Scholar 

  • Dong L. M., Potter J. D., White E., Ulrich C. M., Cardon L. R. and Peters U. 2008 Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 299, 2423–2436.

    Article  CAS  Google Scholar 

  • Fatica A. and Bozzoni I. 2014 Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15, 7–21.

    Article  CAS  Google Scholar 

  • Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D. M., Pineros M. et al. 2019 Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144, 1941–1953.

    Article  CAS  Google Scholar 

  • Guo Q., Lv S., Wang B., Li Y., Cha N., Zhao R. et al. 2019 Long non-coding RNA PRNCR1 has an oncogenic role in breast cancer. Exp. Ther. Med. 18, 4547–4554.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M. and Rinn J. L. 2012 Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346.

    Article  CAS  Google Scholar 

  • He B. S., Sun H. L., Xu T., Pan Y. Q., Lin K., Gao T. Y. et al. 2017 Association of genetic polymorphisms in the LncRNAs with gastric cancer risk in a Chinese population. J. Cancer 8, 531–536.

    Article  CAS  Google Scholar 

  • Heemers H. V. and Tindall D. J. 2007 Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28, 778–808.

    Article  CAS  Google Scholar 

  • Hong J. H., Jin E. H., Kang H., Chang I. A., Lee S. I. and Sung J. K. 2019 Correlations between genetic polymorphisms in long non-coding RNA PRNCR1 and gastric cancer risk in a Korean population. Int. J. Mol. Sci. 20.

  • Huang X., Zhang W. and Shao Z. 2018 Association between long non-coding RNA polymorphisms and cancer risk: a meta-analysis. Biosci. Rep. 38.

  • Hui J., Xu Y., Yang K., Liu M., Wei D., Wei D. et al. 2014 Study of genetic variants of 8q21 and 8q24 associated with prostate cancer in Jing-Jin residents in northern China. Clin. Lab. 60, 645–652.

    Article  CAS  Google Scholar 

  • Khawar M. B., Abbasi M. H. and Sheikh N. 2016 IL-32: A novel pluripotent inflammatory interleukin, towards gastric inflammation, gastric cancer, and chronic rhino sinusitis. Mediators Inflamm. 2016, 8413768.

    Article  Google Scholar 

  • Li L., Jia F., Bai P., Liang Y., Sun R., Yuan F. et al. 2016 Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of gastric cancer. Tumour Biol. 37, 299–303.

    Article  Google Scholar 

  • Li L., Sun R., Liang Y., Pan X., Li Z., Bai P. et al. 2013 Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of colorectal cancer. J. Exp. Clin. Cancer Res. 32, 104.

    Article  CAS  Google Scholar 

  • Lv Z., Xu Q. and Yuan Y. 2017 A systematic review and meta-analysis of the association between long non-coding RNA polymorphisms and cancer risk. Mutat. Res. 771, 1–14.

    Article  CAS  Google Scholar 

  • Mantel N. and Haenszel W. 1959 Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748.

    CAS  PubMed  Google Scholar 

  • Mercer T. R., Dinger M. E. and Mattick J. S. 2009 Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159.

    Article  CAS  Google Scholar 

  • Oremus M., Oremus C., Hall G. B. and McKinnon M. C. 2012 Inter-rater and test-retest reliability of quality assessments by novice student raters using the Jadad and Newcastle-Ottawa Scales. BMJ Open. 2.

  • Ponder B. A. 2001 Cancer genetics. Nature 411, 336–341.

    Article  CAS  Google Scholar 

  • Qin Z., Li X., Tang J., Jiang X., Yu Y., Wang C. et al. 2016 Association between insulin-like growth factor-binding protein-3 polymorphism-202 A/C and the risk of prostate cancer: a meta-analysis. Onco. Targets Ther. 9, 5451–5459.

    Article  Google Scholar 

  • Romani M., Pistillo M. P. and Banelli B. 2015 Environmental epigenetics: crossroad between public health, lifestyle, and cancer prevention. Biomed. Res. Int. 2015, 587983.

    Article  Google Scholar 

  • Salinas C. A., Kwon E., Carlson C. S., Koopmeiners J. S., Feng Z., Karyadi D. M. et al. 2008 Multiple independent genetic variants in the 8q24 region are associated with prostate cancer risk. Cancer Epidemiol. Biomarkers Prev. 17, 1203–1213.

    Article  CAS  Google Scholar 

  • Sattarifard H., Hashemi M., Hassanzarei S., Narouie B. and Bahari G. 2017 Association between genetic polymorphisms of long non-coding RNA PRNCR1 and prostate cancer risk in a sample of the Iranian population. Mol. Clin. Oncol. 7, 1152–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y., Wan H., Lin Y., Xie X., Li Z. and Tan G. 2013 Androgen receptor may be responsible for gender disparity in gastric cancer. Med. Hypotheses 80, 672–674.

    Article  CAS  Google Scholar 

  • Uszczynska-Ratajczak B., Lagarde J., Frankish A., Guigo R. and Johnson R. 2018 Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet. 19, 535–548.

    Article  CAS  Google Scholar 

  • Wang C. C. and Palefsky J. M. 2016 Human papillomavirus-related oropharyngeal cancer in the HIV-infected population. Oral Dis. 22 (Suppl 1), 98–106.

    Article  Google Scholar 

  • Wang X., Zhong J., Chen F., Hu K., Sun S., Leng Y. et al. 2019 Association between lncRNA H19 rs217727 polymorphism and the risk of cancer: an updated meta-analysis. BMC Med. Genet. 20, 186.

    Article  CAS  Google Scholar 

  • Yang L., Lin C., Jin C., Yang J. C., Tanasa B., Li W. et al. 2013 lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500, 598–602.

    Article  CAS  Google Scholar 

  • Yang L., Qiu M., Xu Y., Wang J., Zheng Y., Li M. et al. 2016 Upregulation of long non-coding RNA PRNCR1 in colorectal cancer promotes cell proliferation and cell cycle progression. Oncol. Rep. 35, 318–324.

    Article  CAS  Google Scholar 

  • Yang M. L., Huang Z., Wu L. N., Wu R., Ding H. X. and Wang B. G. 2019 lncRNA-PCAT1 rs2632159 polymorphism could be a biomarker for colorectal cancer susceptibility. Biosci. Rep. 39.

  • Yang X. B., Wang J. S., Zhou J. and Pan C. 2018 Association of genetic variations of LncRNA PRNCR1 and risk of gastric cancer. Acta Univ. Med. Nanjing 38, 1520–1524.

    Google Scholar 

  • Zheng S. L., Hsing A. W., Sun J., Chu L. W., Yu K., Li G. et al. 2010 Association of 17 prostate cancer susceptibility loci with prostate cancer risk in Chinese men. Prostate 70, 425–432.

    Article  CAS  Google Scholar 

  • Zhou H. C., Huang K., Chen X. L., Ren M. and Liu J. R. 2019 The relationship between polymorphism of LncRNA-PRNCR1 and susceptibility and prognosis of intestinal cancer. Med. Innov. China 16, 66–69.

    Google Scholar 

Download references

Acknowledgments

We thank Luping Wang for providing help in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Additional information

Corresponding editor: Upendra Nongthomba

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, P., Li, G., Zhu, J. et al. Association of lncRNA PRNCR1 polymorphisms with cancer susceptibility: a meta-analysis of the current literature. J Genet 100, 19 (2021). https://doi.org/10.1007/s12041-021-01269-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01269-3

Keywords

Navigation