Skip to main content
Log in

Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Powdery mildew (Blumeria graminis f. sp. Tritici, (Bgt)) is an important worldwide fungal foliar disease of wheat (Triticum aestivum) responsible for severe yield losses. The development of resistance genes and dissection of the resistance mechanism will therefore be beneficial in wheat breeding. The Bgt resistance gene PmAS846 was transferred to the hexaploid wheat lines N9134 from Triticum dicoccoides, and it is still one of the most effective resistance genes. Here, by RNA sequencing, we identified three co-expressed gene modules using pairwise comparisons and weighted gene co-expression network analysis during wheat–Bgt interactions compared with mock-infected plants. Hub genes of stress-specific modules were significantly enriched in spliceosomes, phagosomes, the mRNA surveillance pathway, protein processing in the endoplasmic reticulum, and endocytosis. Induced module genes located on chromosome 5BL were selected to construct a protein–protein interaction network. Several proteins were predicted as the key hub node, including Hsp70, DEAD/DEAH box RNA helicase PRH75, elongation factor EF-2, cell division cycle 5, ARF guanine-nucleotide exchange factor GNOM-like, and protein phosphatase 2C 70 protein, which interacted with several disease resistance proteins such as RLP37, RPP13 and RPS2 analogues. Gene ontology enrichment results showed that wheat could activate binding functional genes via an mRNA transcription mechanism in response to Bgt stress. Of these node genes, GNOM-like, PP2C isoform X1 and transmembrane 9 superfamily member 9 were mapped onto the genetic fragment of PmAS846 with a distance of 4.8 Mb. This work provides the foundations for understanding the resistance mechanism and cloning the resistance gene PmAS846.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Anderson C. M., Wagner T. A., Perret M., He Z. H., He D. and Kohorn B. D. 2001 WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol. Biol. 47, 197–206.

    Article  CAS  PubMed  Google Scholar 

  • Baggs E., Dagdas G. and Krasileva K. V. 2017 NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Curr. Opin. Plant Biol. 38, 59−67.

    Article  CAS  PubMed  Google Scholar 

  • Bonardi V., Tang S., Stallmann A., Roberts M., Cherkis K. and Dangl J. L. 2011 Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc. Natl. Acad. Sci. USA 108, 16463–16468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouktila D., Khalfallah Y., Habachi-Houimli Y., Mezghani-Khemakhem M., Makni M. and Makni H. 2015 Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Mol. Genet. Genomics 290, 257−271.

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R., Spannagl M., Pfeifer M., Barker G. L., D’Amore R., Allen A. M. et al. 2012 Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean R., Van Kan J. A., Pretorius Z. A., Hammond-Kosack K. E., Di Pietro A., Spanu P. D. et al. 2012 The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414−430.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodds P. N. and Rathjen J. P. 2010 Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539–548.

    Article  CAS  PubMed  Google Scholar 

  • Ernst J. and Bar-Joseph Z. 2006 STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7, 191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu Y., Duan X., Tang C., Li X., Voegele R. T., Wang X. et al. 2014 TaADF7, an actin-depolymerizing factor, contributes to wheat resistance against Puccinia striiformis f. sp. tritici. Plant J. 78, 16−30.

    Article  CAS  PubMed  Google Scholar 

  • Fu Y., Zhang H., Mandal S. N., Wang C., Chen C. and Ji W. 2016 Quantitative proteomics reveals the central changes of wheat in response to powdery mildew. J. Proteomics 130, 108–119.

    Article  CAS  PubMed  Google Scholar 

  • Garcia A., Cayla X., Guergnon J., Dessauge F., Hospital V., Rebollo M. P. et al. 2003 Serine/threonine protein phosphatases PP1 and PP2A are key players in apoptosis. Biochimie 85, 721−726.

    Article  CAS  PubMed  Google Scholar 

  • Hollender C. A., Kang C., Darwish O., Geretz A., Matthews B. F., Slovin J. et al. 2014 Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol. 165, 1062–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurni S., Brunner S., Buchmann G., Herren G., Jordan T., Krukowski P. et al. 2013 Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 76, 957−969.

    Article  CAS  PubMed  Google Scholar 

  • IWGSC, Appels R., Eversole K., Stein N., Feuillet C., Keller B. et al. 2018 Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, 661–674.

    Google Scholar 

  • Janke C. and Bulinski J. C. 2011 Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773−786.

    Article  CAS  PubMed  Google Scholar 

  • Jurkowski G. I., Smith R. K., Yu I. C., Ham J. H., Sharma S. B., Klessig D. F. et al. 2004 Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol. Plant-Microbe Interact. 17, 511–520.

    Article  CAS  PubMed  Google Scholar 

  • Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R. and Salzberg S. L. 2013 TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohorn B. D. 2016 Cell wall-associated kinases and pectin perception. J. Exp. Bot. 67, 489−494.

    Article  CAS  PubMed  Google Scholar 

  • Langfelder P. and Horvath S. 2008 WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W., Zhu Z., Chern M., Yin J., Yang C., Ran L. et al. 2017 A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170, 114–126.

    Article  CAS  PubMed  Google Scholar 

  • Liu J., Whalley H. J. and Knight M. R. 2015 Combining modelling and experimental approaches to explain how calcium signatures are decoded by calmodulin-binding transcription activators (CAMTAs) to produce specific gene expression responses. New Phytol. 208, 174−187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa T., Kufer T. A. and Schulze-Lefert P. 2011 NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12, 817–826.

    Article  CAS  PubMed  Google Scholar 

  • Miller R. N., Costa Alves G. S. and Van Sluys M. A. 2017 Plant immunity: unravelling the complexity of plant responses to biotic stresses. Ann. Bot. 119, 681−687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nejat N. and Mantri N. 2017 Plant immune system: crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr. Issues Mol. Biol. 23, 1–16.

    Article  PubMed  Google Scholar 

  • Ning Y., Liu W. and Wang G. L. 2017 Balancing immunity and yield in crop plants. Trends Plant Sci. 22,1069−1079.

    Article  CAS  PubMed  Google Scholar 

  • Rahman H., Xu Y. P., Zhang X. R. and Cai X. Z. 2016 Brassica napus genome possesses extraordinary high number of CAMTA genes and CAMTA3 contributes to PAMP triggered Immunity and Resistance to Sclerotinia sclerotiorum. Front Plant Sci. 7, 581.

    PubMed  PubMed Central  Google Scholar 

  • Rasmussen S., Barah P., Suarez-Rodriguez M. C., Bressendorff S., Friis P., Costantino P. et al. 2013 Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 161, 1783–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy A. S., Marquez Y., Kalyna M. and Barta A. 2013 Complexity of the alternative splicing landscape in plants. Plant Cell 25, 3657−3683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saintenac C., Lee W. S., Cambon F., Rudd J. J., King R. C., Marande W. et al. 2018 Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat. Genet. 50, 368–374.

    Article  CAS  PubMed  Google Scholar 

  • Schwessinger B. and Ronald P. C. 2012 Plant innate immunity: perception of conserved microbial signatures. Annu. Rev. Plant Biol. 63, 451−482.

    Article  CAS  PubMed  Google Scholar 

  • Staal J. and Dixelius C. 2009 Plant Innate Immunity. In Encyclopedia of life sciences. John Wiley, Chichester.

    Google Scholar 

  • Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J. et al. 2015 STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–452.

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D. R. et al. 2012 Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562−578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin M., Wang Y., Yao Y., Xie C., Peng H., Ni Z. et al. 2010 Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol. 10, 123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xin M., Wang Y., Yao Y., Song N., Hu Z., Qin D. et al. 2011 Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol. 11, 61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue F., Ji W., Wang C., Zhang H. and Yang B. 2012 High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 124, 1549–1560.

    Article  CAS  PubMed  Google Scholar 

  • Yang Q., He Y., Kabahuma M., Chaya T., Kelly A., Borrego E. et al. 2017 A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat. Genet. 49, 1364−1372.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H., Yang Y., Wang C., Liu M., Li H., Fu Y. et al. 2014 Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics 15, 898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H., Hu W., Hao J., Lv S., Wang C., Tong W. et al. 2016 Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genomics 17, 238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H., Fu Y., Guo H., Zhang L., Wang C. Y., Song W. N. et al. 2019a Transcriptome and proteome-based network analysis reveals a model of gene activation in wheat resistance to stripe rust. Inter. J. Mol. Sci. 20, 1106.

    Article  CAS  Google Scholar 

  • Zhang H., Mao R., Wang Y. Z., Zhang L., Wang C. Y., Lv S. K., et al. 2019b Transcriptome-wide alternative splicing modulation during plant-pathogen interactions in wheat. Plant Sci. 288, 110160.

    Article  CAS  PubMed  Google Scholar 

  • Zuo W., Chao Q., Zhang N., Ye J., Tan G., Li B. et al. 2015 A maize wall-associated kinase confers quantitative resistance to head smut. Nat. Genet. 47, 151–157.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Technologies Research and Development Programme of China (Grant No. 2017YFD0100701), and by the National Natural Science Foundation of China (31971941). We thank Sarah Williams for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanquan Ji or Hong Zhang.

Additional information

Corresponding editor: Manoj Prasad

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Wang, Q., Wang, S. et al. Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress. J Genet 99, 44 (2020). https://doi.org/10.1007/s12041-020-01206-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01206-w

Keywords

Navigation