Skip to main content
Log in

Assessment of genetic diversity and population genetic structure of Carthamus species and Iranian cultivar collection using developed SSR markers

  • Online Resources
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

This experiment was conducted to assess genetic relationships among safflower genotypes from different geographical regions of Iran and other countries using newly developed simple sequence repeat (SSR) markers. By enrichment method, 32 primer pairs were designed of which 18 pairs were able to detect polymorphism in 105 safflower cultivars from Carthamus tinctorius, C. oxyacanthus, C. lanatus, C. glaucus, C. boissieri and C. dentatus. The selected SSR primers amplified a total of 59 alleles with an average of 3.27 alleles per locus among the cultivars and the average values of gene diversity, heterozygosity and PIC were 0.45, 0.37 and 0.39, respectively. Neighbour-joining cluster analysis based on Nei’s genetic distance categorized populations of Carthamus in six major clusters; all wild accessions were grouped differently from cultivated genotypes. Cluster analysis significantly distinguished C. oxyacanthus genotypes in different categories: centre (Arak), northeast (Azarbaiejan), east (Kermanshah) and southeast (Shiraz, Chaharmahal and Kohgiluyeh). The presence of C. boissieri and C. glaucus in one cluster appeared to be in close relationship between each other, indicating a common ancestor. The results revealed that C. dentatus discriminated from the species with \(n=10\) chromosomes, C. boissieri and C. glaucus assigned in to separate subsection. In summary, this study has shown that domesticated and wild genotypes were clustered into two major groups indicating these markers as appropriate tools to amassment genetic diversity and genome mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ambreen H., Kumar S., Tottekkad Variath M., Joshi G., Bali S., Agarwal M. et al. 2015 Development of genomic microsatellite markers in Carthamus tinctorius L. (safflower) using next generation sequencing and assessment of their cross-species transferability and utility for diversity analysis. PLoS One 10, e0135443.

    Article  Google Scholar 

  • Arabnezhad H., Bahar M., Mohammadi H. R. and Latifian M. 2012 Development, characterization and use of microsatellite markers for germplasm analysis in date palm (Phoenix dactylifera L.). Sci. Hortic. 134, 150-156.

    Article  CAS  Google Scholar 

  • Chapman M. A., Hvala J., Strever J., Marvienko M., Kozik A., Michelmore R. W. et al. 2009 Development, polymorphism, and cross-taxon utility of EST-SSR markers from safflower (Carthamus tinctorius L.). Theor. Appl. Genet. 120, 85-91.

    Article  CAS  Google Scholar 

  • Derakhshan E., Majidi M. M., Sharafi Y. and Mirlohi A. 2014 Discrimination and genetic diversity of cultivated and wild safflowers (Carthamus spp.) using EST-microsatellites markers. Biochem. Syst. Ecol. 54, 130-136.

    Article  CAS  Google Scholar 

  • Estilai A. and Knowles P. F. 1976 Cytogenetic studies of Carthamus divaricatus with eleven pairs of chromosomes and its relationship to other Carthamus species. (Compositae). Am. J. Bot. 63, 771-782.

    Article  Google Scholar 

  • Evanno G., Regnaut S. and Goudet J. 2005 Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611-2620.

    Article  CAS  Google Scholar 

  • Hamdan Y. A. S., Garcia-Moreno M. J., Redondo-NevadoVelasco J. and Perez-Vich B. 2011 Development and characterization of genomic microsatellite markers in safflower (Carthamus tinctorius L.). Plant Breed. 130, 237-241.

    Article  CAS  Google Scholar 

  • Hamilton M., Elaine B., Pincus L., Di Fiore A. and Fleischer R. C. 1999 Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. BioTechniques 27, 500-507.

    Article  CAS  Google Scholar 

  • Hanelt P. 1963 Monographische Ubersicht der Gattung Carthamus L. (Compositae). Feddes Repert. 67, 41-180.

    Google Scholar 

  • Knowles P. F. 1958 Safflower. In Advances in agronomy, pp. 289-323. Academic Press, New York.

    Google Scholar 

  • Lee G. A., Sung J. S., Lee S. Y., Chung J. W., Yi J. Y., Kim Y. G. and Lee M. C. 2014 Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method. Mol. Ecol. Resour. 14, 69-78.

    Article  CAS  Google Scholar 

  • López-González G. 1989 Acerca de la clasificación natural delgénero Carthamus L., s.l. Anales Jard. Bot. Madrid 47, 11-34.

    Google Scholar 

  • Liu K. and Muse S. V. 2005 PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128-2129.

    Article  CAS  Google Scholar 

  • Majidi M. M. and Zadhoush S. 2014 Molecular and morphological variation in a world-wide collection of safflower. Crop Sci. 54, 2109-2119.

    Article  Google Scholar 

  • Mokhtari N., Rahim malek M., Talebi M. and Khorrami M. 2013 Assessment of genetic diversity among and within Carthamus species using sequence-related amplified polymorphism (SRAP) markers. Plant Syst. Evol. 299, 1285-1294.

    Article  Google Scholar 

  • Murray M. G. and Thompson W. F. 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325.

    Article  Google Scholar 

  • Oliviera E. J., Padua J. G., Zucchi M. I., Venkovsky R. and Carneiro Vieira M. L. 2006 Origin, evolution and genome distribution of microsatellite. Genet. Mol. Biol. 29, 294-307.

    Article  Google Scholar 

  • Pritchard J. K., Stephens M. and Donnelly P. 2000a Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset F. 2008 Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106.

    Article  Google Scholar 

  • Rozen S. and Skaletsky H. J. 2000 Primer 3 on the WWW for general users and for biologist programmers. In Bioinformatics methods and protocols, methods in molecular biology. (ed. S. Krawetz Misener), pp. 365-386. Humana, New Jersey, USA.

  • Sabzalian M. R., Mirlohi A., Saeidi G. and Rabbani M. T. 2009 Genetic variation among populations of wild safflower, Carthamus oxyacanthus analyzed by agro-morphological traits and ISSR markers. Genet. Resour. Crop Evol. 56, 1057-1064.

    Article  Google Scholar 

  • Sehgal D., Raina S. N., Devarumath R. M., Sasanuma T. and SasakumaT. 2009 Nuclear DNA assay in solving issues related to ancestry of the domesticated diploid safflower (Carthamus tinctorius L.) and the polyploid (Carthamus) taxa, and phylogenetic and genomic relationships in the genus Carthamus L. (Asteraceae). Mol. Phylogen. Evol. 53, 631-644.

    Article  CAS  Google Scholar 

  • Talebi M., Mokhtari N., Rahim malek M. and Sahhafi S. R. 2013 Molecular characterization of Carthamus tinctorius and C. oxyacanthus germplasm using sequence related amplified polymorphism (SRAP) markers. Plant Omics 5, 136-142.

    Google Scholar 

  • Vilatersana R., Garnatje T., Susanna A. and Garcia-Jacas N. 2005 Taxonomic problems in Carthamus (Asteraceae), RAPD markers and sectional classification. Bot. J. Linn. Soc. 147, 375-383.

    Article  Google Scholar 

  • Wright S. 1978 Evolution and genetics of populations: variability within and among natural populations. University of Chicago Press, Chicago.

    Google Scholar 

  • Xie W., Zhang X., Cai H., Liu W. and Peng Y. 2010 Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass (Dactylis glomerata L.). Bioch. Syst. Ecol. 38, 740-749.

    Article  CAS  Google Scholar 

  • Yang Y. X., Wu W., Zheng Y. L., Chen L., Liu R. J. and Huang C. Y. 2007 Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs). Genet. Resour. Crop Evol. 54, 1043-1051.

    Article  CAS  Google Scholar 

  • Yeh F. C., Yang R., Boyle T. J., Ye Z. and Xiyan J. M. 2000 POPGENE 32, Microsoft Window-based freeware for population genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada.

Download references

Acknowledgements

We thank Prof. Mohammad Mahdi Majidi, Genetic and Plant Breeding, College of Agriculture, Isfahan University of Technology for supplying seed samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Sayed-Tabatabaei.

Additional information

Corresponding editor: Manoj Prasad

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, N., Sayed-Tabatabaei, B.E., Bahar, M. et al. Assessment of genetic diversity and population genetic structure of Carthamus species and Iranian cultivar collection using developed SSR markers. J Genet 97 (Suppl 1), 67–78 (2018). https://doi.org/10.1007/s12041-018-0956-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0956-2

Keywords

Navigation