Skip to main content

Advertisement

Log in

Neurodegenerative diseases: model organisms, pathology and autophagy

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

A proteostasis view of neurodegeneration (ND) identifies protein aggregation as a leading causative reason for damage seen at the cellular and organ levels. While investigative therapies that aim at dissolving aggregates have failed, and the promises of silencing expression of ND associated pathogenic proteins or the deployment of engineered induced pluripotent stem cells (iPSCs) are still in the horizon, emerging literature suggests degrading aggregates through autophagy-related mechanisms hold the current potential for a possible cure. Macroautophagy (hereafter autophagy) is an intracellular degradative pathway where superfluous or unwanted cellular cargoes (such as peroxisomes, mitochondria, ribosomes, intracellular bacteria and misfolded protein aggregates) are wrapped in double membrane vesicles called autophagosomes that eventually fuses with lysosomes for their degradation. The selective branch of autophagy that deals with identification, capture and degradation of protein aggregates is called aggrephagy. Here, we cover the workings of aggrephagy detailing its selectivity towards aggregates. The diverse cellular adaptors that bridge the aggregates with the core autophagy machinery in terms of autophagosome formation are discussed. In ND, essential protein quality control mechanisms fail as the constituent components also find themselves trapped in the aggregates. Thus, although cellular aggrephagy has the potential to be upregulated, its dysfunction further aggravates the pathogenesis. This phenomenon when combined with the fact that neurons can neither dilute out the aggregates by cell division nor the dead neurons can be replaced due to low neurogenesis, makes a compelling case for aggrephagy pathway as a potential therapeutic option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agosta F., Chio A., Cosottini M., De Stefano N., Falini A., Mascalchi M. et al. 2010 The present and the future of neuroimaging in amyotrophic lateral sclerosis. Am. J. Neuroradiol. 31, 1769–1777.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Akopian G. J., Barry C., Cepeda and Levine M. S. 2016 Altered membrane properties and firing patterns of external globus pallidus neurons in the R6/2 mouse model of Huntington’s disease. J. Neurosci. Res.  94, 1400–1410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amick J. and Ferguson S. M. 2017 C9orf72: at the intersection of lysosome cell biology and neurodegenerative disease. Traffic 18, 267–276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anckar J. and Sistonen L. 2011 Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem.  80, 1089–1115.

    Article  PubMed  CAS  Google Scholar 

  • Anden N. E. 1974 Inhibition of the turnover of the brain dopamine after treatment with the gammaaminobutyrate: 2-oxyglutarate transaminase inhibitor aminooxyacetic acid. Naunyn Schmiedebergs Arch. Pharmacol. 283, 419–424.

    Article  PubMed  CAS  Google Scholar 

  • Andre V. M., Cepeda C. and Levine M. S. 2010 Dopamine and glutamate in Huntington’s disease: a balancing act. CNS Neurosci. Ther.  16, 163–178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andre V. M., Cepeda C., Fisher Y. E., Huynh M., Bardakjian N., Singh S. et al 2011 Differential electrophysiological changes in striatal output neurons in Huntington’s disease. J. Neurosci.  31, 1170–1182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andreassen O. A., Dedeoglu A., Klivenyi P., Beal M. F. and Bush A. I. 2000 N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. Neuroreport  11, 2491–2493.

    Article  PubMed  CAS  Google Scholar 

  • Arbuthnott G. W., Ingham C. A. and Wickens J. R. 2000 Dopamine and synaptic plasticity in the neostriatum. J. Anat.  196, 587–596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Audrain M., Fol R., Dutar P., Potier B., Billard J. M., Flament J. et al. 2016 Alzheimer’s disease-like APP processing in wild-type mice identifies synaptic defects as initial steps of disease progression. Mol. Neurodegener. 11, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avruch J., Long X., Ortiz-Vega S., Rapley J., Papageorgiou A. and Dai N. 2009 Amino acid regulation of TOR complex 1. Am. J. Physiol. Endocrinol. Metab.  296, E592–E602.

    Article  PubMed  CAS  Google Scholar 

  • Bah A. and Vergne I. 2017 Macrophage autophagy and bacterial infections. Front Immunol.  8, 1483.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balch W. E., Morimoto R. I., Dillin A. and Kelly J. W. 2008 Adapting proteostasis for disease intervention. Science  319, 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Bagetta V., Ghiglieri V., Sgobio C., Calabresi P. and Picconi B. 2010 Synaptic dysfunction in Parkinson’s disease. Biochem. Soc. Trans.  38, 493–497.

    Article  PubMed  CAS  Google Scholar 

  • Beccano-Kelly D. A., Volta M., Munsie L. N., Paschall S. A., Tatarnikov I. and Co K. 2015 LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory. Hum. Mol. Genet.  24, 1336–1349.

    Article  PubMed  CAS  Google Scholar 

  • Bergman H., Wichmann T., Karmon B. and DeLong M. R. 1994 The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. J. Neurophysiol. 72, 507–520.

    Article  PubMed  CAS  Google Scholar 

  • Bhide P. G., Day M., Sapp E., Schwarz C., Sheth A., Kim J. et al. 1996 Expression of normal and mutant huntingtin in the developing brain. J. Neurosci.  16, 5523–5535.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bissler J. J., Kingswood J. C., Radzikowska E., Zonnenberg B. A., Belousova E., Frost M. D. et al. 2017 Everolimus long-term use in patients with tuberous sclerosis complex: four-year update of the EXIST-2 study. PLoS One  12, e0180939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blesa J., Trigo-Damas I., Dileone M., Del Rey N. L., Hernandez L. F. and Obeso J. A. 2017 Compensatory mechanisms in Parkinson’s disease: circuits adaptations and role in disease modification. Exp. Neurol.  298, 148–161.

    Article  PubMed  CAS  Google Scholar 

  • Bliss T. V. and Collingridge G. L. 1993 A synaptic model of memory: long-term potentiation in the hippocampus. Nature  361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Botstein D., Chervitz S. A. and Cherry J. M. 1997 Yeast as a model organism. Science  277, 1259–1260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Branchi I., Bichler Z., Berger-Sweeney J. and Ricceri L. 2003 Animal models of mental retardation: from gene to cognitive function. Neurosci. Biobehav. Rev.  27, 141–153.

    Article  PubMed  CAS  Google Scholar 

  • Brooks K. J., Hill M. D., Hockings P. D. and Reid D. G. 2004 MRI detects early hindlimb muscle atrophy in Gly93Ala superoxide dismutase-1 (G93A SOD1) transgenic mice, an animal model of familial amyotrophic lateral sclerosis. NMR Biomed.  17, 28–32.

    Article  PubMed  Google Scholar 

  • Brose N., O’Connor V. and Skehel P. 2010 Synaptopathy: dysfunction of synaptic function? Biochem. Soc. Trans.  38, 443–444.

    Article  PubMed  CAS  Google Scholar 

  • Brown Jr. R. H., and Robberecht W. 2001 Amyotrophic lateral sclerosis: pathogenesis. Semin. Neurol.  21, 131–139.

    Article  PubMed  Google Scholar 

  • Calabresi P., Maj R., Pisani A., Mercuri N. B. and Bernardi G. 1992a Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci.  12, 4224–4233.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Calabresi P., Pisani A., Mercuri N. B. and Bernardi G. 1992b Long-term Potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur. J. Neurosci.  4, 929–935.

    Article  PubMed  Google Scholar 

  • Calabresi P., Mercuri N. B., Sancesario G. and Bernardi G. 1993 Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson’s disease. Brain  116, 433–452.

    Article  PubMed  Google Scholar 

  • Calabresi P., Centonze D., Gubellini P., Marfia G. A., Pisani A., Sancesario G. et al. 2000 Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog. Neurobiol.  61, 231–265.

    Article  PubMed  CAS  Google Scholar 

  • Calautti C., Naccarato M., Jones P. S., Sharma N., Day D. D., Carpenter A. T. et al. 2007 The relationship between motor deficit and hemisphere activation balance after stroke: A 3T fMRI study. Neuroimage  34, 322–331.

    Article  PubMed  Google Scholar 

  • Cardenas C., Miller R. A., Smith I., Bui T., Molgo J., Muller M. et al. 2010 Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell  142, 270–283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carriedo S. G., Sensi S. L., Yin H. Z. and Weiss J. H. 2000 AMPA exposures induce mitochondrial Ca(2+) overload and ROS generation in spinal motor neurons in vitro. J. Neurosci.  20, 240–250.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Centonze D., Battista N., Rossi S., Mercuri N. B., Finazzi-Agro A., Bernardi G. et al. 2004 A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal gabaergic Transmission. Neuropsychopharmacology  29, 1488–1497.

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C., Ariano M. A., Calvert C. R., Flores-Hernandez J., Chandler S. H., Leavitt B. R. et al. 2001 NMDA receptor function in mouse models of Huntington disease. J. Neurosci. Res.  66, 525–539.

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C., Wu N., Andre V. M., Cummings D. M. and Levine M. S. 2007 The corticostriatal pathway in Huntington’s disease. Prog. Neurobiol.  81, 253–271.

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C., Cummings D. M., Andre V. M., Holley S. M. and Levine M. S. 2010 Genetic mouse models of Huntington’s disease: focus on electrophysiological mechanisms. ASN Neuro  2, e00033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cha J. H., Kosinski C. M., Kerner J. A., Alsdorf S. A., Mangiarini L., Davies S. W. et al. 1998 Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc. Natl. Acad. Sci. USA  95, 6480–6485.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chamoux E., McManus S., Laberge G., Bisson M. and Roux S. 2013 Involvement of kinase PKC-zeta in the p62/p62(P392L)-driven activation of NF-kappaB in human osteoclasts. Biochim. Biophys. Acta  1832, 475–484.

    Article  PubMed  CAS  Google Scholar 

  • Chan E. Y., Longatti A., McKnight N. C. and Tooze S. A. 2009 Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell. Biol.  29, 157–171.

    Article  PubMed  CAS  Google Scholar 

  • Chang S., Bray S. M., Li Z., Zarnescu D. C., He C., Jin P. et al. 2008 Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat. Chem. Biol.  4, 256–263.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan S., Goodwin J. G., Chauhan S., Manyam G., Wang J., Kamat A. M. et al. 2013 ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell  50, 16–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen S., Sayana P., Zhang X. and Le W. 2013 Genetics of amyotrophic lateral sclerosis: an update. Mol. Neurodegener. 8, 28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung K., Crane M. M. and Lu H. 2008 Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat. Methods  5, 637–643.

    Article  PubMed  CAS  Google Scholar 

  • Chung C. Y., Khurana V., Auluck P. K., Tardiff D. F., Mazzulli J. R., Soldner F. et al. 2013 Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science  342, 983–987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Citri A. and Malenka R. C. 2008 Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology  33, 18–41.

    Article  PubMed  Google Scholar 

  • Cleveland D. W. and Rothstein J. D. 2001 From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci.  2, 806–819.

    Article  PubMed  CAS  Google Scholar 

  • Cooper A. A., Gitler A. D., Cashikar A., Haynes C. M., Hill K. J., Bhullar B. et al. 2006 Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science  313, 324–328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cortes C. J., Ling S. C., Guo L. T., Hung G., Tsunemi T., Ly. L. et al. 2014 Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron  82, 295–307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coyle J. T. and Schwarcz R. 1976 Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature  263, 244–246.

    Article  PubMed  CAS  Google Scholar 

  • Crawley J. N. 2008 Behavioral phenotyping strategies for mutant mice. Neuron  57, 809–818.

    Article  PubMed  CAS  Google Scholar 

  • Cummings D. M., Cepeda C. and Levine M. S. 2010 Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington’s disease. ASN Neuro.  2, e00036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunha-Santos J., Duarte-Neves J., Carmona V., Guarente L., Pereira de Almeida L. and Cavadas C. 2016 Caloric restriction blocks neuropathology and motor deficits in Machado-Joseph disease mouse models through SIRT1 pathway. Nat. Commun.  7, 11445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danysz W. and Parsons C. G. 2012 Alzheimer’s disease, beta-amyloid, glutamate, NMDA receptors and memantine—searching for the connections. Br. J. Pharmacol.  167, 324–352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Duve C. and Wattiaux R. 1966 Functions of lysosomes. Annu. Rev. Physiol.  28, 435–492.

    Article  PubMed  Google Scholar 

  • De Strooper B., Saftig P., Craessaerts K., Vanderstichele H., Guhde G., Annaert W. et al. 1998 Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature  391, 387–390.

    Article  PubMed  CAS  Google Scholar 

  • Di Bartolomeo S., Corazzari M., Nazio F., Oliverio S., Lisi G., Antonioli M. et al. 2010 The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol.  191, 155–168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DiFiglia M. 1997 Clinical genetics, II. Huntington’s disease: from the gene to pathophysiology. Am. J. Psychiatry  154, 1046.

    Article  PubMed  CAS  Google Scholar 

  • Dihanich S. and C. Manzoni 2011 LRRK2: a problem lurking in vesicle trafficking? J. Neurosci.  31, 9787–9788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doble A. 1999 The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther.  81, 163–221.

    Article  PubMed  CAS  Google Scholar 

  • Ejlerskov P., Hultberg J. G., Wang J., Carlsson R., Ambjorn M., Kuss M. et al. 2015 Lack of neuronal IFN-beta-IFNAR causes lewy body- and Parkinson’s disease-like dementia. Cell  163, 324–339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elrick M. J., Yu T., Chung C. and Lieberman A. P. 2012 Impaired proteolysis underlies autophagic dysfunction in Niemann-pick type C disease. Hum. Mol. Genet.  21, 4876–4887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esler W. P. and Wolfe M. S. 2001 A portrait of Alzheimer secretases–new features and familiar faces. Science  293, 1449–1454.

    Article  PubMed  CAS  Google Scholar 

  • Esposito G., Ana Clara F. and Verstreken P. 2012 Synaptic vesicle trafficking and Parkinson’s disease. Dev. Neurobiol.  72, 134–144.

    Article  PubMed  CAS  Google Scholar 

  • Fecto F., Yan J., Vemula S. P., Liu E., Yang Y., Chen W. et al. 2011 SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol.  68, 1440–1446.

    Article  PubMed  Google Scholar 

  • Feldmeyer D., Kask K., Brusa R., Kornau H. C., Kolhekar R., Rozov A. et al. 1999 Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat. Neurosci.  2, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Ferrucci M., Fulceri F., Toti L., Soldani P., Siciliano G., Paparelli A. et al. 2011 Protein clearing pathways in ALS. Arch. Ital. Biol.  149, 121–149.

    PubMed  Google Scholar 

  • Filimonenko M., Isakson P., Finley K. D., Anderson M., Jeong H., Melia T. J. et al. 2010 The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell  38, 265–279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer L. R. and Glass J. D. 2010 Oxidative stress induced by loss of Cu, Zn-superoxide dismutase (SOD1) or superoxide-generating herbicides causes axonal degeneration in mouse DRG cultures. Acta Neuropathol.  119, 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Fischer L. R., Culver D. G., Tennant P., Davis A. A., Wang M., Castellano-Sanchez A. 2004 Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol.  185, 232–240.

    Article  PubMed  Google Scholar 

  • Fitzjohn S. M., Morton R. A., Kuenzi F., Rosahl T. W., Shearman M., Lewis H. et al. 2001 Age-related impairment of synaptic transmission but normal long-term potentiation in transgenic mice that overexpress the human APP695SWE mutant form of amyloid precursor protein. J. Neurosci.  21, 4691–4698.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fonnum F., Storm-Mathisen J. and Divac I. 1981 Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience  6, 863–873.

    Article  PubMed  CAS  Google Scholar 

  • Gardoni F., Picconi B., Ghiglieri V., Polli F., Bagetta V., Bernardi G. et al. 2006 A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J. Neurosci.  26, 2914–2922.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Geisler S., Holmstrom K. M., Skujat D., Fiesel F. C., Rothfuss O. C., Kahle P. J. et al. 2010 PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol.  12, 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Geng J. and Klionsky D. J. 2010 The Golgi as a potential membrane source for autophagy. Autophagy  6, 950–951.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geracitano R., Paolucci E., Prisco S., Guatteo E., Zona C., Longone P. et al. 2003 Altered long-term corticostriatal synaptic plasticity in transgenic mice overexpressing human CU/ZN superoxide dismutase (GLY(93)–\(>\text{ ALA }\)) mutation. Neuroscience  118, 399–408.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg A. L. 2003 Protein degradation and protection against misfolded or damaged proteins. Nature  426, 895–899.

    Article  PubMed  CAS  Google Scholar 

  • Gonatas N. K., Anderson W. and Evangelista I. 1967 The contribution of altered synapses in the senile plaque: an electron microscopic study in Alzheimer’s dementia. J. Neuropathol. Exp. Neurol.  26, 25–39.

    Article  PubMed  CAS  Google Scholar 

  • Gorrie G. H., Fecto F., Radzicki D., Weiss C., Shi Y., Dong H. et al. 2014 Dendritic spinopathy in transgenic mice expressing ALS/dementia-linked mutant UBQLN2. Proc. Natl. Acad. Sci. USA  111, 14524–14529.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grabowska, M. and Michaluk J. 1974 On the role of serotonin in apomorphine-induced locomotor stimulation in rats. Pharmacol. Biochem. Behav.  2, 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Graham R. K., Pouladi M. A., Joshi P., Lu G., Deng Y., Wu N. P. et al. 2009 Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J. Neurosci.  29, 2193–2204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greengard P., Nairn A. C., Girault J. A., Ouimet C. C., Snyder G. L., Fisone G. et al. 1998 The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res. Brain Res. Rev.  26, 274–284.

    Article  PubMed  CAS  Google Scholar 

  • Haack T. B., Hogarth P., Gregory A., Prokisch H. and Hayflick S. J. 2013 BPAN: the only X-linked dominant NBIA disorder. Int. Rev. Neurobiol.  110, 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Haber S. N. and Nauta W. J. 1983 Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry. Neuroscience  9, 245–260.

    Article  PubMed  CAS  Google Scholar 

  • Hadano S., Hand C. K., Osuga H., Yanagisawa Y., Otomo A., Devon R. S. et al. 2001 A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet.  29, 166–173.

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N. et al. 2013 Autophagosomes form at ER-mitochondria contact sites. Nature  495, 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Hardingham G. E., Fukunaga Y. and Bading H. 2002 Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci.  5, 405–414.

    Article  PubMed  CAS  Google Scholar 

  • Harnett M. M., Pineda M. A., Latre de Late P., Eason R. J., Besteiro S., Harnett W. et al. 2017 From Christian de Duve to Yoshinori Ohsumi: more to autophagy than just dining at home. Biomed. J.  40, 9–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harper P. S. 1996 New genes for old diseases: the molecular basis of myotonic dystrophy and Huntington’s disease. The Lumleian lecture 1995. J. R. Coll. Phys. Lond.  30, 221–231.

    CAS  Google Scholar 

  • Hassani O. K., Mouroux M. and Feger J. 1996 Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience  72, 105–115.

    Article  PubMed  CAS  Google Scholar 

  • Hassan B., Akcakanat A., Holder A. M. and Meric-Bernstam F. 2013 Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surg. Oncol. Clin. N. Am.  22, 641–664.

    Article  PubMed  Google Scholar 

  • Heath P. R. and Shaw P. J. 2002 Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve  26, 438–458.

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M., Loidl C. F., You Z. B., Andersson K., Silveira R., O’Connor W. T. et al. 1994 Neurocircuitry of the basal ganglia studied by monitoring neurotransmitter release. Effects of intracerebral and perinatal asphyctic lesions. Mol. Neurobiol.  9, 171–82.

    Article  PubMed  CAS  Google Scholar 

  • Hetz C. 2012 The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol.  13, 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Hetz C. and Mollereau B. 2014 Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat. Rev. Neurosci.  15, 233–249.

    Article  PubMed  CAS  Google Scholar 

  • Higgins G. A. and H. Jacobsen 2003 Transgenic mouse models of Alzheimer’s disease: phenotype and application. Behav. Pharmacol.  14, 419–438.

    PubMed  CAS  Google Scholar 

  • Hollister A. S., Breese G. R., Kuhn C. M., Cooper B. R. and Schanberg S. M. 1976 An inhibitory role for brain serotonin-containing systems in the locomotor effects of d-amphetamine. J. Pharmacol. Exp. Ther.  198, 12–22.

    PubMed  CAS  Google Scholar 

  • Hsia A. Y., Masliah E., McConlogue L., Yu G. Q., Tatsuno G., Hu K. et al. 1999 Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. USA  96, 3228–3233.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hyttinen J. M., Amadio M., Viiri J., Pascale A., Salminen A. and K. Kaarniranta 2014 Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res. Rev.  18, 16–28.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura Y., Kirisako T., Takao T., Satomi Y., Shimonishi Y., Ishihara N. et al. 2000 A ubiquitin-like system mediates protein lipidation. Nature  408, 488–492.

    Article  PubMed  CAS  Google Scholar 

  • Isakson P., Holland P. and Simonsen A. 2013 The role of ALFY in selective autophagy. Cell Death Differ.  20, 12–20.

    Article  PubMed  CAS  Google Scholar 

  • Ito H., Nakamura M., Komure O., Ayaki T., Wate R., Maruyama H. et al. 2011 Clinicopathologic study on an ALS family with a heterozygous E478G optineurin mutation. Acta Neuropathol.  122, 223–229.

    Article  PubMed  Google Scholar 

  • Jaber N. and Zong W. X. 2013 Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function. Ann. N. Y. Acad. Sci.  1280, 48–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jahrling J. B. and Laberge R. M. 2015 Age-related neurodegeneration prevention through mTOR inhibition: potential mechanisms and remaining questions. Curr. Top. Med. Chem.  15, 2139–2151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jimenez-Sanchez M., Thomson F., Zavodszky E. and Rubinsztein D. C. 2012 Autophagy and polyglutamine diseases. Prog. Neurobiol.  97, 67–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jimenez-Sanchez M., Lam W., Hannus M., Sonnichsen B., Imarisio S., Fleming A. et al. 2015 siRNA screen identifies QPCT as a druggable target for Huntington’s disease. Nat. Chem. Biol.  11, 347–354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones A. L., Wood J. D. and Harper P. S. 1997 Huntington disease: advances in molecular and cell biology. J. Inherit. Metab. Dis.  20, 125–138.

    Article  PubMed  CAS  Google Scholar 

  • Joshi P. R., Wu N. P., Andre V. M., Cummings D. M., Cepeda C., Joyce J. A. et al. 2009 Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease. J. Neurosci.  29, 2414–2427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Julien J. P. 2001 Amyotrophic lateral sclerosis. Unfolding the toxicity of the misfolded. Cell  104, 581–591.

    Article  PubMed  CAS  Google Scholar 

  • Kachaner D., Genin P., Laplantine E. and Weil R. 2012 Toward an integrative view of Optineurin functions. Cell Cycle  11, 2808–2818.

    Article  PubMed  CAS  Google Scholar 

  • Kachroo A. H., Laurent J. M., Yellman C. M., Meyer A. G., Wilke C. O. and Marcotte E. M. 2015 Evolution systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science  348, 921–925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kambe Y., Nakamichi N., Takarada T., Fukumori R., Nakazato R., Hinoi E. et al. 2011 A possible pivotal role of mitochondrial free calcium in neurotoxicity mediated by N-methyl-d-aspartate receptors in cultured rat hippocampal neurons. Neurochem. Int.  59, 10–20.

    Article  PubMed  CAS  Google Scholar 

  • Kampinga H. H. and Craig E. A. 2010 The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol.  11, 579–592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanning K. C., Kaplan A. and Henderson C. E. 2010 Motor neuron diversity in development and disease. Annu. Rev. Neurosci.  33, 409–440.

    Article  PubMed  CAS  Google Scholar 

  • Karuppagounder S. S., Brahmachari S., Lee Y., Dawson V. L., Dawson T. M. and Ko H. S. 2014 The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci. Rep.  4, 4874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaushik S., Rodriguez-Navarro J. A., Arias E., Kiffin R., Sahu S., Schwartz G. J. et al. 2011 Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab.  14, 173–183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan S. H. and Kumar R. 2012 Role of an intrinsically disordered conformation in AMPK-mediated phosphorylation of ULK1 and regulation of autophagy. Mol. Biosyst.  8, 91–96.

    Article  PubMed  CAS  Google Scholar 

  • Khedraki A., Reed E. J., Romer S. H., Wang Q., Romine W., Rich M. M. et al. 2017 Depressed synaptic transmission and reduced vesicle release sites in Huntington’s disease neuromuscular junctions. J. Neurosci.  37, 8077–8091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khurana V. and Lindquist S. 2010 Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker’s yeast? Nat. Rev. Neurosci.  11, 436–449.

    Article  PubMed  CAS  Google Scholar 

  • Kiernan M. C., Vucic S., Cheah B. C., Turner M. R., Eisen A., Hardiman O. et al. 2011 Amyotrophic lateral sclerosis. Lancet  377, 942–955.

    Article  PubMed  CAS  Google Scholar 

  • Kihara T. and Shimohama S. 2004 Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol. Exp.  64, 99–105.

    Google Scholar 

  • Kim E., Goraksha-Hicks P., Li L., Neufeld T. P., and Guan K. L. 2008a Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol.  10, 935–945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim M., Sandford E., Gatica D., Qiu Y., Liu X., Zheng Y. et al. 2016 Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. Elife  5, pii: e12245.

  • Kim P. K., Hailey D. W., Mullen R. T. and Lippincott-Schwartz J. 2008b Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA  105, 20567–20574.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J., Hughes E. G., Shetty A. S., Arlotta P., Goff L. A., Bergles D. E. and Brown S. P. 2017 Changes in the excitability of neocortical neurons in a mouse model of amyotrophic lateral sclerosis are not specific to corticospinal neurons and are modulated by advancing disease. J. Neurosci.  37, 9037–9053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirkin V., McEwan D. G., Novak I. and Dikic I. 2009 A role for ubiquitin in selective autophagy. Mol. Cell  34, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Kiskinis E., Sandoe J., Williams L. A., Boulting G. L., Moccia R., Wainger B. J. et al. 2014 Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell  14, 781–795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kreitzer A. C. and Malenka R. C. 2005 Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J. Neurosci.  25, 10537–10545.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Klapstein G. J., Fisher R. S., Zanjani H., Cepeda C., Jokel E. S., Chesselet M. F. et al. 2001 Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington’s disease transgenic mice. J. Neurophysiol.  86, 2667–2677.

    Article  PubMed  CAS  Google Scholar 

  • Kolodziejczyk K. and Raymond L. A. 2016 Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model. Neurobiol. Dis.  86, 62–74.

    Article  PubMed  CAS  Google Scholar 

  • Kostic V., Jackson-Lewis V., de Bilbao F., Dubois-Dauphin M. and Przedborski S. 1997 Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science  277, 559–562.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs K. A., Steullet P., Steinmann M., Do K. Q., Magistretti P. J., Halfon O. et al. 2007 TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proc. Natl. Acad. Sci. USA  104, 4700–4705.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kroemer G. and Jaattela M. 2005 Lysosomes and autophagy in cell death control. Nat. Rev. Cancer  5, 886–897.

    Article  PubMed  CAS  Google Scholar 

  • Kumar D. R., Aslinia F., Yale S. H. and Mazza J. J. 2011 Jean-Martin charcot: the father of neurology. Clin. Med. Res.  9, 46–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuner R., Groom A. J., Bresink I., Kornau H. C., Stefovska V., Muller G. et al. 2005 Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. Proc. Natl. Acad. Sci. USA  102, 5826–5831.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Labbadia J. and Morimoto R. I. 2015 Repression of the heat shock response is a programmed event at the onset of reproduction. Mol. Cell  59, 639–650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LaFerla F. M. and Green K. N. 2012 Animal models of Alzheimer disease. Cold Spring Harb. Perspect Med.  2, pii: a006320

  • Lepeta K., Lourenco M. V., Schweitzer B. C., Martino Adami P. V., Banerjee P., Catuara-Solarz S. et al. 2016 Synaptopathies: synaptic dysfunction in neurological disorders—a review from students to students. J. Neurochem.  138, 785–805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lesage S. and Brice A. 2009 Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet.  18, R48–59.

    Article  PubMed  CAS  Google Scholar 

  • Levine M. S., Cepeda C., Hickey M. A., Fleming S. M. and Chesselet M. F. 2004 Genetic mouse models of Huntington’s and Parkinson’s diseases: illuminating but imperfect. Trends Neurosci.  27, 691–697.

    Article  PubMed  CAS  Google Scholar 

  • Levine M. S., Klapstein G. J., Koppel A., Gruen E., Cepeda C., Vargas M. E. et al. 1999 Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J. Neurosci. Res.  58, 515–532.

    Article  PubMed  CAS  Google Scholar 

  • Li L., Zviti R., Ha C., Wang Z. V., Hill J. A. and Lin F. 2017 Forkhead box O3 (FoxO3) regulates kidney tubular autophagy following urinary tract obstruction. J. Biol. Chem.  292, 13774–13783.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li X. J. 1999 The early cellular pathology of Huntington’s disease. Mol. Neurobiol.  20, 111–124.

    Article  PubMed  Google Scholar 

  • Lim J. and Yue Z. 2015 Neuronal aggregates: formation, clearance, and spreading. Dev. Cell  32, 491–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lipton S. A. and Rosenberg P. A. 1994 Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med.  330, 613–622.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz M. C. and Heitman J. 1995 TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J. Biol. Chem.  270, 27531–27537.

    Article  PubMed  CAS  Google Scholar 

  • Lovinger D. M., Tyler E. C. and Merritt A. 1993 Short- and long-term synaptic depression in rat neostriatum. J. Neurophysiol.  70, 1937–1949.

    Article  PubMed  CAS  Google Scholar 

  • Lu K., Psakhye I. and Jentsch S. 2014 Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell  158, 549–563.

    Article  PubMed  CAS  Google Scholar 

  • Luheshi L. M., Tartaglia G. G., Brorsson A. C., Pawar A. P., Watson I. E., Chiti F. et al. 2007 Systematic in vivo analysis of the intrinsic determinants of amyloid Beta pathogenicity. PLoS Biol.  5, e290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundblad M., Picconi B., Lindgren H. and Cenci M. A. 2004 A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol. Dis.  16, 110–123.

    Article  PubMed  CAS  Google Scholar 

  • Ma N., Liu Q., Zhang L., Henske E. P. and Ma Y. 2013 TORC1 signaling is governed by two negative regulators in fission yeast. Genetics  195, 457–468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maday S. and Holzbaur E. L. 2014 Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev. Cell  30, 71–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mangiarini L., Sathasivam K., Seller M., Cozens B., Harper A., Hetherington C. et al. 1996 Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell  87, 493–506.

    Article  PubMed  CAS  Google Scholar 

  • Maj J., Pawlowski L. and Sarnek J. 1974 The role of brain 5-hydroxytryptamine in the central action of L-DOPA. Adv. Biochem. Psychopharmacol.  10, 253–256.

    PubMed  CAS  Google Scholar 

  • Martorana A. and Koch G. 2014 Is dopamine involved in Alzheimer’s disease? Front. Aging Neurosci.  6, 252.

    PubMed  PubMed Central  Google Scholar 

  • Martinez-Vicente M., Talloczy Z., Wong E., Tang G., Koga H., Kaushik S. et al. 2010 Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat. Neurosci.  13, 567–576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martire A., Pepponi R., Domenici M. R., Ferrante A., Chiodi V. and Popoli P. 2013 BDNF prevents NMDA-induced toxicity in models of Huntington’s disease: the effects are genotype specific and adenosine A2A receptor is involved. J. Neurochem.  125, 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Maselli R. A., Wollman R. L., Leung C., Distad B., Palombi S. and Richman D. P. 1993 Neuromuscular transmission in amyotrophic lateral sclerosis. Muscle Nerve  16, 1193–1203.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Terry R. D., DeTeresa R. M. and Hansen L. A. 1989 Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease. Neurosci. Lett.  103, 234–239.

    Article  PubMed  CAS  Google Scholar 

  • McGeer P. L., McGeer E. G., Scherer U. and Singh K. 1977 A glutamatergic corticostriatal path? Brain Res.  128, 369–373.

    Article  PubMed  CAS  Google Scholar 

  • Menalled L. and Brunner D. 2014 Animal models of Huntington’s disease for translation to the clinic: best practices. Mov. Disord.  29, 1375–1390.

    Article  PubMed  Google Scholar 

  • Menalled L. B. and Chesselet M. F. 2002 Mouse models of Huntington’s disease. Trends Pharmacol. Sci.  23, 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Mhyre T. R., Boyd J. T., Hamill R. W. and Maguire-Zeiss K. A. 2012 Parkinson’s disease. Subcell Biochem.  65, 389–455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller B. R., Walker A. G., Shah A. S., Barton S. J. and Rebec G. V. 2008 Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington’s disease. J. Neurophysiol.  100, 2205–2216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milnerwood A. J., Cummings D. M., Dallerac G. M., Brown J. Y., Vatsavayai S. C., Hirst M. C. et al. 2006 Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum. Mol. Genet.  15, 1690–1703.

    Article  PubMed  CAS  Google Scholar 

  • Milnerwood A. J., Gladding C. M., Pouladi M. A., Kaufman A. M., Hines R. M., Boyd J. D. et al. 2010 Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron  65, 178–190.

    Article  PubMed  CAS  Google Scholar 

  • Milnerwood A. J. and Raymond L. A. 2007 Corticostriatal synaptic function in mouse models of Huntington’s disease: early effects of huntingtin repeat length and protein load. J. Physiol.  585, 817–831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milnerwood A. J. and Raymond L. A. 2010 Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci.  33, 513–523.

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N. 2010 The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol.  22, 132–139.

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N., Yamamoto A., Matsui M., Yoshimori T. and Ohsumi Y. 2004 In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell  15, 1101–1111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy K. P., Carter R. J., Lione L. A., Mangiarini L., Mahal A., Bates G. P. et al. 2000 Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. J. Neurosci.  20, 5115–5123.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murray L. M., Talbot K. and Gillingwater T. H. 2010 Review: neuromuscular synaptic vulnerability in motor neurone disease: amyotrophic lateral sclerosis and spinal muscular atrophy. Neuropathol. Appl. Neurobiol. 36, 133–156.

    Article  PubMed  CAS  Google Scholar 

  • Murer M. G., Tseng K. Y., Kasanetz F., Belluscio M. and Riquelme L. A. 2002 Brain oscillations, medium spiny neurons, and dopamine. Cell Mol. Neurobiol.  22, 611–632.

    Article  PubMed  CAS  Google Scholar 

  • Mymrikov E. V., Daake M., Richter B., Haslbeck M. and Buchner J. 2017 The chaperone activity and substrate spectrum of human small heat shock proteins. J. Biol. Chem.  292, 672–684.

    Article  PubMed  CAS  Google Scholar 

  • Nagae T., Araki K., Shimoda Y., Sue L. I., Beach T. G. and Konishi Y. 2016 Cytokines and cytokine receptors Involved in the pathogenesis of Alzheimer’s disease. J. Clin. Cell. Immunol. . 7, 441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narayan P., Ehsani S. and Lindquist S. 2014 Combating neurodegenerative disease with chemical probes and model systems. Nat. Chem. Biol.  10, 911–920.

    Article  PubMed  CAS  Google Scholar 

  • Nasir J., Floresco S. B., O’Kusky J. R., Diewert V. M., Richman J. M., Zeisler J. et al. 1995 Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell  81, 811–823.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls D. G., Johnson-Cadwell L., Vesce S., Jekabsons M. and Yadava N. 2007 Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity. J. Neurosci. Res.  85, 3206–3212.

    Article  PubMed  CAS  Google Scholar 

  • Nistico R., Pignatelli M., Piccinin S., Mercuri N. B. and Collingridge G. 2012 Targeting synaptic dysfunction in Alzheimer’s disease therapy. Mol. Neurobiol.  46, 572–587.

    Article  PubMed  CAS  Google Scholar 

  • Nitsch C. and R. Riesenberg 1995 Synaptic reorganisation in the rat striatum after dopaminergic deafferentation: an ultrastructural study using glutamate decarboxylase immunocytochemistry. Synapse  19, 247–263.

    Article  PubMed  CAS  Google Scholar 

  • Nixon R. A. 2004 Niemann-Pick type C disease and Alzheimer’s disease: the APP-endosome connection fattens up. Am. J. Pathol.  164, 757–761.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nixon R. A. 2013 The role of autophagy in neurodegenerative disease. Nat. Med.  19, 983–997.

    Article  PubMed  CAS  Google Scholar 

  • Nizzardo M., Simone C., Rizzo F., Ulzi G., Ramirez A., Rizzuti M. et al. 2016 Morpholino-mediated SOD1 reduction ameliorates an amyotrophic lateral sclerosis disease phenotype. Sci. Rep.  6, 21301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nussbaum-Krammer C. I. and Morimoto R. I. 2014 Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases. Dis. Model Mech.  7, 31–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otomo A., Kunita R., Suzuki-Utsunomiya K., Ikeda J. E. and Hadano S. 2011 Defective relocalization of ALS2/alsin missense mutants to Rac1-induced macropinosomes accounts for loss of their cellular function and leads to disturbed amphisome formation. FEBS Lett.  585, 730–736.

    Article  PubMed  CAS  Google Scholar 

  • Outeiro T. F. and Lindquist S. 2003 Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science  302, 1772–1775.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pankiv S., Clausen T. H., Lamark T., Brech A., Bruun J. A., Outzen H. et al. 2007 p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem.  282, 24131–24145.

    Article  PubMed  CAS  Google Scholar 

  • Paoletti P., Vila I., Rife M., Lizcano J. M., Alberch J. and Gines S. 2008 Dopaminergic and glutamatergic signaling crosstalk in Huntington’s disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J. Neurosci. 28, 10090–10101.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palma E., Reyes-Ruiz J. M., Lopergolo D., Roseti C., Bertollini C., Ruffolo G. et al. 2016 Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy. Proc. Natl. Acad. Sci. USA  113, 3060–3065.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pardo C. A., Xu Z., Borchelt D. R., Price D. L., Sisodia S. S. and Cleveland D. W. 1995 Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc. Natl. Acad. Sci. USA  92, 954–958.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paul P. and de Belleroche J. 2014 The role of D-serine and glycine as co-agonists of NMDA receptors in motor neuron degeneration and amyotrophic lateral sclerosis (ALS). Front. Synaptic. Neurosci. 6, 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paulsen J. S., Langbehn D. R., Stout J. C., Aylward E., Ross C. A., Nance M. et al. 2008 Detection of Huntington’s disease decades before diagnosis: the predict-HD study. J. Neurol. Neurosurg. Psychiatry  79, 874–880.

    Article  PubMed  CAS  Google Scholar 

  • Pehar M., Vargas M. R., Cassina P., Barbeito A. G., Beckman J. S. and Barbeito L. 2005 Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis. Neurodegener. Dis.  2, 139–146.

    Article  PubMed  Google Scholar 

  • Peng T. I., Jou M. J., Sheu S. S. and Greenamyre J. T. 1998 Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons. Exp. Neurol.  149, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Pouladi M. A., Graham R. K., Karasinska J. M., Xie Y., Santos R. D., Petersen A. et al. 2009 Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain  132, 919–932.

    Article  PubMed  Google Scholar 

  • Powers E. T., Morimoto R. I., Dillin A., Kelly J. W. and Balch W. E. 2009 Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem.  78, 959–991.

    Article  PubMed  CAS  Google Scholar 

  • Pozueta J., Lefort R. and Shelanski M. L. 2013 Synaptic changes in Alzheimer’s disease and its models. Neuroscience  251, 51–65.

    Article  PubMed  CAS  Google Scholar 

  • Puzzo D., Piacentini R., Fa M., Gulisano W., Li Puma D. D., Staniszewski A. et al. 2017 LTP and memory impairment caused by extracellular Abeta and Tau oligomers is APP-dependent. Elife  6, pii: e26991.

  • Pyo J. O., Yoo S. M., Ahn H. H., Nah J., Hong S. H., Kam T. I. et al. 2013 Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun.  4, 2300.

    Article  PubMed  CAS  Google Scholar 

  • Radzicki D., Liu E., Deng H. X., Siddique T. and Martina M. 2016 Early impairment of synaptic and intrinsic excitability in mice expressing ALS/Dementia-linked mutant UBQLN2. Front Cell Neurosci.  10, 216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajasekhar K., Suresh S. N., Manjithaya R. and Govindaraju T. 2015 Rationally designed peptidomimetic modulators of abeta toxicity in Alzheimer’s disease. Sci. Rep.  5, 8139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravikumar B., Moreau K., Jahreiss L., Puri C. and Rubinsztein D. C. 2010 Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol.  12, 747–757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raychaudhuri S., Loew C., Korner R., Pinkert S., Theis M., Hayer-Hartl M. et al. 2014 Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell  156, 975–985.

    Article  PubMed  CAS  Google Scholar 

  • Ritz D., Vuk M., Kirchner P., Bug M., Schutz S., Hayer A. et al. 2011 Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nat. Cell Biol.  13, 1116–1123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rinne U. K., Rinne J. O., Rinne J. K., Laakso K. and Lonnberg P. 1984 Brain neurotransmitters and neuropeptides in Parkinson’s disease. Acta. Physiol. Pharmacol. Latinoam.  34, 287–299.

    PubMed  CAS  Google Scholar 

  • Rizzoli S. O. 2014 Synaptic vesicle recycling: steps and principles. EMBO J.  33, 788–822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosen D. R. 1993 Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature  364, 362.

    Article  PubMed  CAS  Google Scholar 

  • Rouse S. T., Marino M. J., Bradley S. R., Awad H., Wittmann M. and Conn P. J. 2000 Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol. Ther.  88, 427–435.

    Article  PubMed  CAS  Google Scholar 

  • Rowan M. J., Klyubin I., Cullen W. K. and Anwyl R. 2003 Synaptic plasticity in animal models of early Alzheimer’s diseasePhilos. Trans. R. Soc. Lond. B Biol. Sci.  358, 821–828.

    Article  CAS  Google Scholar 

  • Ryan S. D., Dolatabadi N., Chan S. F., Zhang X., Akhtar M. W., Parker J. et al. 2013 Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell  155, 1351–1364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saitsu H., Nishimura T., Muramatsu K., Kodera H., Kumada S., Sugai K. et al. 2013 De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 45, 445–449, 449e1.

  • Sanelli T., Ge W., Leystra-Lantz C. and Strong M. J. 2007 Calcium mediated excitotoxicity in neurofilament aggregate-bearing neurons in vitro is NMDA receptor dependant. J. Neurol. Sci.  256, 39–51.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S., Davies J. E., Huang Z., Tunnacliffe A. and Rubinsztein D. C. 2007a Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem.  282, 5641–5652.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S., Perlstein E. O., Imarisio S., Pineau S., Cordenier A., Maglathlin R. L. et al. 2007b Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat. Chem. Biol.  3, 331–338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaguri H., Nilsson P., Hashimoto S., Nagata K., Saito T., De Strooper B. et al. 2017 APP mouse models for Alzheimer’s disease preclinical studies. EMBO J.  36, 2473–2487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki S. 2011 Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol.  70, 349–359.

    Article  PubMed  Google Scholar 

  • Sasaki S. and Maruyama S. 1994 Decreased synaptophysin immunoreactivity of the anterior horns in motor neuron disease. Acta Neuropathol.  87, 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer V., Lavenir I., Ozcelik S., Tolnay M., Winkler D. T. and Goedert M. 2012 Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain  135, 2169–2177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheff S. W. and Price D. A. 1993 Synapse loss in the temporal lobe in Alzheimer’s disease. Ann. Neurol.  33, 190–199.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R., Whetsell Jr W. O. and Mangano R. M. 1983 Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science  219, 316–318.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. 2002 Alzheimer’s disease is a synaptic failure. Science  298, 789–791.

    Article  PubMed  CAS  Google Scholar 

  • Sepers M. D. and Raymond L. A. 2014 Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease. Drug Discov. Today  19, 990–996.

    Article  PubMed  CAS  Google Scholar 

  • Sian J., Dexter D. T., Lees A. J., Daniel S., Agid Y., Javoy-Agid F. et al. 1994 Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol.  36, 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Shehata M., Matsumura H., Okubo-Suzuki R., Ohkawa N. and Inokuchi K. 2012 Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J. Neurosci.  32, 10413–10422.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sheng M. and Sala C. 2001 PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci.  24, 1–29.

    Article  PubMed  CAS  Google Scholar 

  • Skibinski G., Parkinson N. J., Brown J. M., Chakrabarti L., Lloyd S. L., Hummerich H. et al. 2005 Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet.  37, 806–808.

    Article  PubMed  CAS  Google Scholar 

  • Slow E. J., van Raamsdonk J., Rogers D., Coleman S. H., Graham R. K., Deng Y. et al. 2003 Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet.  12, 1555–1567.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. G. and Snyder M. 2006 Yeast as a model for human disease. Curr. Protoc. Hum. Genet. (https://doi.org/10.1002/0471142905.hg1506s48).

  • Sontag E. M., Samant R. S. and Frydman J. 2017 Mechanisms and functions of spatial protein quality control. Annu. Rev. Biochem.  86, 97–122.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M. G., Schmidt M. L., Lee V. M., Trojanowski J. Q., Jakes R. and Goedert M. 1997 Alpha-synuclein in Lewy bodies. Nature  388, 839–840.

    Article  PubMed  CAS  Google Scholar 

  • Spires-Jones T. and Knafo S. 2012 Spines, plasticity, and cognition in Alzheimer’s model mice. Neural. Plast.  2012, 319836.

    Article  PubMed  Google Scholar 

  • Steiner H. 2004 Uncovering gamma-secretase. Curr. Alzheimer Res.  1, 175–181.

    Article  PubMed  CAS  Google Scholar 

  • Stolz A., Ernst A. and Dikic I. 2014 Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol.  16, 495–501.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S., K. M. Sixt, R. Barrow and S. H. Snyder 2009 Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science  324, 1327–1330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun G. Z., He Y. C., Ma X. K., Li S. T., Chen D. J., Gao M. et al. 2017 Hippocampal synaptic and neural network deficits in young mice carrying the human APOE4 gene. CNS Neurosci. Ther.  23, 748–758.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tabata K., Matsunaga K., Sakane A., Sasaki T., Noda T. and Yoshimori T. 2010 Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain. Mol. Biol. Cell  21, 4162–7412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka M., Machida Y., Niu S., Ikeda T., Jana N. R., Doi H. et al. 2004 Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med.  10, 148–154.

  • Terry R. D., Masliah E., Salmon D. P., Butters N., DeTeresa R., Hill R. et al. 1991 Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol.  30, 572–580.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G. and Koo E. H. 2008 Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem.  283, 29615–29619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trancikova A., Ramonet D. and Moore D. J. 2011 Genetic mouse models of neurodegenerative diseases. Prog. Mol. Biol. Transl. Sci.  100, 419–482.

    Article  PubMed  CAS  Google Scholar 

  • Van Damme P., Dewil M., Robberecht W. and Van Den Bosch L. 2005 Excitotoxicity and amyotrophic lateral sclerosis. Neurodegener. Dis.  2, 147–159.

    Article  PubMed  Google Scholar 

  • van der Staay F. J., Arndt S. S. and Nordquist R. E. 2009 Evaluation of animal models of neurobehavioral disorders. Behav. Brain Funct.  5, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanhauwaert R., Kuenen S., Masius R., Bademosi A., Manetsberger J., Schoovaerts N. et al. 2017 The SAC1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals. EMBO J.  36, 1392–1411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vergara R., Rick C., Hernandez-Lopez S., Laville J. A., Guzman J. N., Galarraga E. et al. 2003 Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J. Physiol.  553, 169–182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vermeiren C., Hemptinne I., Vanhoutte N., Tilleux S., Maloteaux J. M. and Hermans E. 2006 Loss of metabotropic glutamate receptor-mediated regulation of glutamate transport in chemically activated astrocytes in a rat model of amyotrophic lateral sclerosis. J. Neurochem.  96, 719–731.

    Article  PubMed  CAS  Google Scholar 

  • Vijayan V. and Verstreken P. 2017 Autophagy in the presynaptic compartment in health and disease. J. Cell Biol.  216, 1895–1906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogels O. J., Oyen W. J., van Engelen B. G., Padberg G. W. and Horstink M. W. 1999 Decreased striatal dopamine-receptor binding in sporadic ALS: glutamate hyperactivity? Neurology  52, 1275–1277.

    Article  PubMed  CAS  Google Scholar 

  • Vogels O. J., Veltman J., Oyen W. J. and Horstink M. W. 2000 Decreased striatal dopamine D2 receptor binding in amyotrophic lateral sclerosis (ALS) and multiple system atrophy (MSA): D2 receptor down-regulation versus striatal cell degeneration. J. Neurol. Sci.  180, 62–65.

    Article  PubMed  CAS  Google Scholar 

  • von Lewinski F. and Keller B. U. 2005 Ca\(^{2+}\), mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci.  28, 494–500.

    Article  CAS  Google Scholar 

  • Vonsattel J. P., Myers R. H., Stevens T. J., Ferrante R. J., Bird E. D. and Richardson Jr. E. P. 1985 Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol.  44, 559–577.

    Article  PubMed  CAS  Google Scholar 

  • Wainger B. J., Kiskinis E., Mellin C., Wiskow O., Han S. S., Sandoe J. et al. 2014 Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep.  7, 1–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker F. O. 2007 Huntington’s disease. Lancet  369, 218–228.

    Article  PubMed  CAS  Google Scholar 

  • Walther D. M., P. Kasturi, M. Zheng, S. Pinkert, G. Vecchi, P. Ciryam. et al. 2017 Widespread proteome remodeling and aggregation in aging C. elegans. Cell  168, 944.

    Article  PubMed  CAS  Google Scholar 

  • Wang F., Durfee L. A., Huibregtse J. M. 2013 A cotranslational ubiquitination pathway for quality control of misfolded proteins. Mol. Cell  50, 368–378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G., Liu X., Gaertig M. A., Li S. and Li X. J. 2016 Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc. Natl. Acad. Sci. USA  113, 3359–3364.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Webster C. P., Smith E. F., Bauer C. S., Moller A., Hautbergue G. M., Ferraiuolo L. et al. 2016 The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J.  35, 1656–1676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams A., Sarkar S., Cuddon P., Ttofi E. K., Saiki S., Siddiqi F. H. et al. 2008 Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol.  4, 295–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winslow A. R., Chen C. W., Corrochano S., Acevedo-Arozena A., Gordon D. E., Peden A. A. et al. 2010 alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J. Cell Biol.  190, 1023–1037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong Y. C. and Holzbaur E. L. 2014 The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J. Neurosci.  34, 1293–1305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y., Hentati A., Deng H. X., Dabbagh O., Sasaki T., Hirano M. et al. 2001 The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat. Genet.  29, 160–165.

    Article  PubMed  CAS  Google Scholar 

  • Yao C., Johnson W. M., Gao Y., Wang W., Zhang J., Deak M. et al. 2013 Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Hum. Mol. Genet.  22, 328–344.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikai S., Sasaki H., Doh-ura K., Furuya H. and Sakaki Y. 1990 Genomic organization of the human amyloid beta-protein precursor gene. Gene  87, 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Yu W., Polepalli J., Wagh D., Rajadas J., Malenka R. and Lu B. 2012 A critical role for the PAR-1/MARK-tau axis in mediating the toxic effects of Abeta on synapses and dendritic spines. Hum. Mol. Genet.  21, 1384–1390.

    Article  PubMed  CAS  Google Scholar 

  • Zaffagnini G. and Martens S. 2016 Mechanisms of Selective Autophagy. J. Mol. Biol.  428, 1714–1724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zavodszky E., Seaman M. N., Moreau K., Jimenez-Sanchez M., Breusegem S. Y., Harbour M. E. et al. 2014 Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat. Commun.  5, 3828.

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y. G., Sun L., Miao G., Ji C., Zhao H., Sun H. et al. 2015 The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis. Autophagy  11, 881–890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou H., Huang C., Chen H., Wang D., Landel C. P., Xia P. Y. et al. 2010 Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet.  6, e1000887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou L., Wang W., Hoppel C., Liu J. and Zhu X. 2017 Parkinson’s disease-associated pathogenic VPS35 mutation causes complex I deficits. Biochim. Biophys. Acta  1863, 2791–2795.

    Article  CAS  PubMed Central  Google Scholar 

  • Zona C., Ferri A., Gabbianelli R., Mercuri N. B., Bernardi G., Rotilio G. et al. 1998 Voltage-activated sodium currents in a cell line expressing a Cu, Zn superoxide dismutase typical of familial ALS. Neuroreport  9, 3515–3518.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the autophagy lab (JNCASR), Mridhula Giridharan and Aparna Hebbar for critical reading of the manuscript. We apologize to researchers whose work could not be included due to constraint in space. We acknowledge Wellcome Trust/DBT India Alliance Intermediate Fellowship (500159-Z-09-Z), DST-SERB Grant (EMR/2015/001946) and LSRB-DRDO Grant (LSRB-31012017-2018) to RM, DST-SERB Grant (EMR/2015/001946) to JC, and JNCASR intramural funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Manjithaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, S.N., Verma, V., Sateesh, S. et al. Neurodegenerative diseases: model organisms, pathology and autophagy. J Genet 97, 679–701 (2018). https://doi.org/10.1007/s12041-018-0955-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0955-3

Keywords

Navigation