Skip to main content

Advertisement

Log in

The placental gateway of maternal transgenerational epigenetic inheritance

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

While much of our understanding of genetic inheritance is based on the genome of the organism, it is becoming clear that there is an ample amount of epigenetic inheritance, which though reversible, escapes erasing process during gametogenesis and goes on to the next generation. Several examples of transgenerational inheritance of epigenetic features with potential impact on embryonic development and subsequent adult life have come to light. In placental mammals, the placenta is an additional route for epigenetic information flow. This information does not go through any meiotic reprogramming and is, therefore, likely to have a more profound influence on the organism. This also has the implication of providing epigenetic instructions for several months, which is clearly a maternal advantage. Although less well-known, there is also an impact of the embryo in emitting genetic information to the maternal system that remains well beyond the completion of the pregnancy. In this review, we discuss several factors in the context of the evolution of this mammal-specific phenomenon, including genomic imprinting, micromosaicism, and assisted reproduction. We also highlight how this kind of inheritance might require attention in the modern lifestyle within the larger context of the evolutionary process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aagaard K., Ma J., Antony K. M., Ganu R., Petrosino J. and Versalovic J. 2014 The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237–265.

    Google Scholar 

  • Adams Waldorf K. M. and McAdams R. M. 2013 Influence of infection during pregnancy on fetal development. Reproduction 146, R151–R162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adelman D. M., Gertsenstein M., Nagy A., Simon M. C. and Maltepe E. 2000 Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev. 14, 3191–3203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adibi J. J., Marques Jr E. T., Cartus A. and Beigi R. H. 2016 Teratogenic effects of the Zika virus and the role of the placenta. Lancet 387, 1587–1590.

    Article  CAS  PubMed  Google Scholar 

  • Aguilera O., Fernandez A. F., Munoz A. and Fraga M. F. 2010 Epigenetics and environment: a complex relationship. J. Appl. Physiol. 109, 243–251.

    Article  CAS  PubMed  Google Scholar 

  • Albrektsen G., Heuch I., Tretli S. and Kvale G. 1995 Is the risk of cancer of the corpus uteri reduced by a recent pregnancy? A prospective study of 765,756 Norwegian women. Int. J. Cancer 61, 485–490.

    Article  CAS  PubMed  Google Scholar 

  • Andersen L. B., Harro M., Sardinha L. B., Froberg K., Ekelund U., Brage S. and Anderssen S. A. 2006 Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Lancet 368, 299–304.

    Article  PubMed  Google Scholar 

  • Antipatis C., Ashworth C. J., Riley S. C., Hannah L., Hoggard N. and Lea R. G. 2002 Vitamin A deficiency during rat pregnancy alters placental TNF-alpha signalling and apoptosis. Am. J. Reprod. Immunol. 47, 151–158.

    Article  PubMed  Google Scholar 

  • Anway M. D., Cupp A. S., Uzumcu M. and Skinner M. K. 2005 Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469.

    Article  CAS  PubMed  Google Scholar 

  • Babenko O., Kovalchuk I. and Metz G. A. 2015 Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci. Biobehav. Rev. 48, 70–91.

    Article  PubMed  Google Scholar 

  • Barlow D. P. and Bartolomei M. S. 2014 Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6, pii. a018382.

  • Baumann M. U., Schneider H., Malek A., Palta V., Surbek D. V., Sager R. et al. 2014 Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I). PLoS One 9, e106037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belkaid Y. and Hand T. W. 2014 Role of the microbiota in immunity and inflammation. Cell 157, 121–141.

  • Bell A. W. and Ehrhardt R. A. 2002 Regulation of placental nutrient transport and implications for fetal growth. Nutr. Res. Rev. 15, 211–230.

    Article  CAS  PubMed  Google Scholar 

  • Bertram C., Khan O., Ohri S., Phillips D. I., Matthews S. G. and Hanson M. A. 2008 Transgenerational effects of prenatal nutrient restriction on cardiovascular and hypothalamic-pituitary-adrenal function. J. Physiol. 586, 2217–2229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian C. and Yu X. 2014 PGC7 suppresses TET3 for protecting DNA methylation. Nucleic Acids Res. 42, 2893–2905.

    Article  CAS  PubMed  Google Scholar 

  • Binder N. K., Beard S. A., Kaitu’u-Lino T. J., Tong S., Hannan N. J. and Gardner D. K. 2015 Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner. Reproduction 149, 435–444.

    Article  CAS  PubMed  Google Scholar 

  • Bloise E., Feuer S. K. and Rinaudo P. F. 2014 Comparative intrauterine development and placental function of ART concepti: implications for human reproductive medicine and animal breeding. Hum. Reprod. Update 20, 822–839.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bocheva G. and Boyadjieva N. 2011 Epigenetic regulation of fetal bone development and placental transfer of nutrients: progress for osteoporosis. Interdiscip. Toxicol. 4, 167–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broad K. D. and Keverne E. B. 2011 Placental protection of the fetal brain during short-term food deprivation. Proc. Natl. Acad. Sci. USA 108, 15237–15241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley M. 2015 Ancient collagen reveals evolutionary history of the endemic South American ‘ungulates’. Proc. Biol. Sci. 282, 20142671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buermans H. P. and den Dunnen J. T. 2014 Next generation sequencing technology: Advances and applications. Biochim. Biophys. Acta 1842, 1932–1941.

    Article  CAS  PubMed  Google Scholar 

  • Bunkar N., Pathak N., Lohiya N. K. and Mishra P. K. 2016 Epigenetics: A key paradigm in reproductive health. Clin. Exp. Reprod. Med. 43, 59–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burton G. J. and Fowden A. L. 2015 The placenta: a multifaceted, transient organ. Philos. Trans. R. Soc. London, B Biol. Sci. 370, 20140066.

    Article  Google Scholar 

  • Carone B. R., Fauquier L., Habib N., Shea J. M., Hart C. E., Li R. et al. 2010 Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challier J. C., Basu S., Bintein T., Minium J., Hotmire K., Catalano P. M. and Hauguel-de Mouzon S. 2008 Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 29, 274–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F., Wang T., Feng C., Lin G., Zhu Y., Wu G. et al. 2015 Proteome differences in placenta and endometrium between normal and intrauterine growth restricted pig fetuses. PLoS One 10, e0142396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chim S. S., Shing T. K., Hung E. C., Leung T. Y., Lau T. K., Chiu R. W. and Lo Y. M. 2008 Detection and characterization of placental microRNAs in maternal plasma. Clin. Chem. 54, 482–490.

    Article  CAS  PubMed  Google Scholar 

  • Cho I., Yamanishi S., Cox L., Methe B. A., Zavadil J., Li K. et al. 2012 Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choux C., Carmignac V., Bruno C., Sagot P., Vaiman D. and Fauque P. 2015 The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy. Clin. Epigenet. 7, 87.

    Article  CAS  Google Scholar 

  • Chu W., Fant M. E., Geraghty D. E. and Hunt J. S. 1998 Soluble HLA-G in human placentas: synthesis in trophoblasts and interferon-gamma-activated macrophages but not placental fibroblasts. Hum. Immunol. 59, 435–442.

    Article  CAS  PubMed  Google Scholar 

  • Coan P. M., Fowden A. L., Constancia M., Ferguson-Smith A. C., Burton G. J. and Sibley C. P. 2008 Disproportional effects of Igf2 knockout on placental morphology and diffusional exchange characteristics in the mouse. J. Physiol. 586, 5023–5032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordova-Palomera A., Fatjo-Vilas M., Gasto C., Navarro V., Krebs M. O. and Fananas L. 2015 Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Transl. Psychiatry 5, e557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crean A. J., Kopps A. M. and Bonduriansky R. 2014 Revisiting telegony: offspring inherit an acquired characteristic of their mother’s previous mate. Ecol. Lett. 17, 1545–1552.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crews D., Gore A. C., Hsu T. S., Dangleben N. L., Spinetta M., Schallert T. et al. 2007 Transgenerational epigenetic imprints on mate preference. Proc. Natl. Acad. Sci. USA 104, 5942–5946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross J. C., Baczyk D., Dobric N., Hemberger M., Hughes M., Simmons D. G. et al. 2003 Genes, development and evolution of the placenta. Placenta 24, 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Davis E. P. and Sandman C. A. 2010 The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development.Child Dev. 81, 131–148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawe G. S., Tan X. W. and Xiao Z. C. 2007 Cell migration from baby to mother. Cell Adh. Migr. 1, 19–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dempster E. L., Pidsley R., Schalkwyk L. C., Owens S., Georgiades A., Kane F. et al. 2011 Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum. Mol. Genet. 20, 4786–4796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz P., Powell T. L. and Jansson T. 2014 The role of placental nutrient sensing in maternal-fetal resource allocation. Biol. Reprod. 91, 82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diego M. A., Jones N. A., Field T., Hernandez-Reif M., Schanberg S., Kuhn C. and Gonzalez-Garcia A. 2006 Maternal psychological distress, prenatal cortisol, and fetal weight. Psychosom. Med. 68, 747–753.

    Article  PubMed  Google Scholar 

  • Diejomaoh M. F., Bello Z., Al Jassar W., Jirous J., Karunakaran K. and Mohammed A. T. 2015 Consecutive successful pregnancies subsequent to intravenous immunoglobulin therapy in a patient with recurrent spontaneous miscarriage. Int. Med. Case Rep. J. 8, 337–344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dioum E. M., Chen R., Alexander M. S., Zhang Q., Hogg R. T., Gerard R. D. and Garcia J. A. 2009 Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324, 1289–1293.

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Salas P., Moore S. E., Baker M. S., Bergen A. W., Cox S. E., Dyer R. A. et al. 2014 Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 5, 3746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupressoir A., Lavialle C. and Heidmann T. 2012 From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33, 663–671.

    Article  CAS  PubMed  Google Scholar 

  • Edwards C. A. and Ferguson-Smith A. C. 2007 Mechanisms regulating imprinted genes in clusters. Curr. Opin. Cell Biol. 19, 281–289.

    Article  CAS  PubMed  Google Scholar 

  • El Hajj N. and Haaf T. 2013 Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil. Steril. 99, 632–641.

    Article  PubMed  CAS  Google Scholar 

  • El Hajj N., Schneider E., Lehnen H. and Haaf T. 2014 Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction 148, R111–R120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fainaru O., Shseyov D., Hantisteanu S. and Groner Y. 2005 Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. Proc. Natl. Acad. Sci. USA 102, 10598–10603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas S. A., Bottiger A. K., Isaksson H. S., Finnell R. H., Ren A. and Nilsson T. K. 2013 Epigenetic alterations in folate transport genes in placental tissue from fetuses with neural tube defects and in leukocytes from subjects with hyperhomocysteinemia. Epigenetics 8, 303–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S., Jacobsen S. E. and Reik W. 2010 Epigenetic reprogramming in plant and animal development. Science 330, 622–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Twinn D. S., Constancia M. and Ozanne S. E. 2015 Intergenerational epigenetic inheritance in models of developmental programming of adult disease. Semin. Cell Dev. Biol. 43, 85–95.

    Article  PubMed  Google Scholar 

  • Filkowski J. N., Ilnytskyy Y., Tamminga J., Koturbash I., Golubov A., Bagnyukova T. et al. 2010 Hypomethylation and genome instability in the germline of exposed parents and their progeny is associated with altered miRNA expression. Carcinogenesis 31, 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  • Fowden A. L., Coan P. M., Angiolini E., Burton G. J. and Constancia M. 2011 Imprinted genes and the epigenetic regulation of placental phenotype. Prog. Biophys. Mol. Biol. 106, 281–288.

    Article  CAS  PubMed  Google Scholar 

  • Gabory A., Attig L. and Junien C. 2011 Epigenetic mechanisms involved in developmental nutritional programming. World J. Diabetes 2, 164–175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabory A., Ferry L., Fajardy I., Jouneau L., Gothie J. D., Vige A. et al. 2012 Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PLoS One 7, e47986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadi V. K. 2009 Fetal microchimerism and cancer. Cancer Lett. 276, 8–13.

    Article  CAS  PubMed  Google Scholar 

  • Gadi V. K. and Nelson J. L. 2007 Fetal microchimerism in women with breast cancer. Cancer Res. 67, 9035–9038.

    Article  CAS  PubMed  Google Scholar 

  • Gheorghe C. P., Goyal R., Mittal A. and Longo L. D. 2010 Gene expression in the placenta: maternal stress and epigenetic responses. Int. J. Dev. Biol. 54, 507–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giussani D. A. 2016 The fetal brain sparing response to hypoxia: physiological mechanisms. J. Physiol. 594, 1215–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman P. D., Lillycrop K. A., Vickers M. H., Pleasants A. B., Phillips E. S., Beedle A. S. et al. 2007 Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc. Natl. Acad. Sci. USA 104, 12796–12800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfrey K. M. 2002 The role of the placenta in fetal programming-a review. Placenta 23, suppl A, S20–S27.

    Article  PubMed  Google Scholar 

  • Gordon L., Joo J. E., Powell J. E., Ollikainen M., Novakovic B., Li X. et al. 2012 Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res. 22, 1395–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronowitz S., Westerlund C., Hogberg T., Ramsby S., Hall H. and Lindberg U. H. 1987 Synthetic and receptor binding studies on bicyclic annelated systems related to cyproheptadine. Acta Pharm. Suec. 24, 1–14.

    CAS  PubMed  Google Scholar 

  • Guleria I. and Sayegh M. H. 2007 Maternal acceptance of the fetus: true human tolerance. J. Immunol. 178, 3345–3351.

    Article  CAS  PubMed  Google Scholar 

  • Guttmacher A. E., Maddox Y. T. and Spong C. Y. 2014 The human placenta project: placental structure, development, and function in real time. Placenta 35, 303–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hales C. N. and Barker D. J. 1992 Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595–601.

    Article  CAS  PubMed  Google Scholar 

  • Han K. H., Kim M. K., Kim H. S., Chung H. H. and Song Y. S. 2013 Protective effect of progesterone during pregnancy against ovarian cancer. J. Cancer Prev. 18, 113–122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han L., Witmer P. D., Casey E., Valle D. and Sukumar S. 2007 DNA methylation regulates MicroRNA expression. Cancer Biol. Ther. 6, 1284–1288.

    CAS  PubMed  Google Scholar 

  • Hansen M., Kurinczuk J. J., Bower C. and Webb S. 2002 The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N. Engl. J. Med. 346, 725–730.

    Article  PubMed  Google Scholar 

  • Heijmans B. T., Tobi E. W., Stein A. D., Putter H., Blauw G. J., Susser E. S. et al. 2008 Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 105, 17046–17049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes R., Montemagno R., Jones J., Preece M., Rodeck C. and Soothill P. 1997 Fetal and maternal plasma insulin-like growth factors and binding proteins in pregnancies with appropriate or retarded fetal growth. Early Hum. Dev. 49, 7–17.

    Article  CAS  PubMed  Google Scholar 

  • Holness M. J. and Sugden M. C. 2006 Epigenetic regulation of metabolism in children born small for gestational age. Curr. Opin. Clin. Nutr. Metab. Care 9, 482–488.

    Article  CAS  PubMed  Google Scholar 

  • Hu M., Richard J. E., Maliqueo M., Kokosar M., Fornes R., Benrick A. et al. 2015 Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring. Proc. Natl. Acad. Sci. USA 112, 14348–14353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwaki T., Yamamoto K., Matsuura T., Sugimura M., Kobayashi T. and Kanayama N. 2004 Alteration of integrins under hypoxic stress in early placenta and choriocarcinoma cell line BeWo. Gynecol. Obstet. Invest. 57, 196–203.

    Article  CAS  PubMed  Google Scholar 

  • Iwasa Y. 1998 The conflict theory of genomic imprinting: how much can be explained? Curr. Top. Dev. Biol. 40, 255–293.

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R. 1997 DNA methylation and imprinting: why bother? Trends Genet. 13, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Jahan S., Zinnat R., Hasan Z., Ahmed C. M., Habib S. H., Saha S. and Ali L. 2009 An investigation into genetic contribution to the relationship between insulin resistance and birth weight. Int. J. Diabetes Dev. Ctries 29, 12–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansson N., Nilsfelt A., Gellerstedt M., Wennergren M., Rossander-Hulthen L., Powell T. L. and Jansson T. 2008 Maternal hormones linking maternal body mass index and dietary intake to birth weight. Am. J. Clin. Nutr. 87, 1743–1749.

    CAS  PubMed  Google Scholar 

  • Jansson N., Rosario F. J., Gaccioli F., Lager S., Jones H. N., Roos S. et al. 2013 Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J. Clin. Endocrinol. Metab. 98, 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Jansson T. and Powell T. L. 2007 Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin. Sci. (Lond) 113, 1–13.

    Article  CAS  Google Scholar 

  • Jansson T., Wennergren M. and Illsley N. P. 1993 Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J. Clin. Endocrinol. Metab. 77, 1554–1562.

    CAS  PubMed  Google Scholar 

  • Katari S., Turan N., Bibikova M., Erinle O., Chalian R., Foster M. et al. 2009 DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum. Mol. Genet. 18, 3769–3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakatsu M., Urata Y., Goto S., Ono Y. and Li T. S. 2013 Placental extract protects bone marrow-derived stem/progenitor cells against radiation injury through anti-inflammatory activity. J. Radiat. Res. 54, 268–276.

    Article  CAS  PubMed  Google Scholar 

  • Keverne E. B. 2014 Significance of epigenetics for understanding brain development, brain evolution and behaviour. Neuroscience 264, 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Khosla S., Dean W., Brown D., Reik W. and Feil R. 2001 Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 64, 918–926.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T., Ikeda Y. and Ishikawa R. 2008 Genomic imprinting: a balance between antagonistic roles of parental chromosomes. Semin. Cell Dev. Biol. 19, 574–579.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H., Hiura H., John R. M., Sato A., Otsu E., Kobayashi N. et al. 2009 DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur. J. Hum. Genet. 17, 1582–1591.

  • Krebs C., Longo L. D. and Leiser R. 1997 Term ovine placental vasculature: comparison of sea level and high altitude conditions by corrosion cast and histomorphometry. Placenta 18, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Krisher R. L. 2004 The effect of oocyte quality on development. J. Anim. Sci. 82, e-suppl. E14–E23.

    PubMed  Google Scholar 

  • Kuramochi-Miyagawa S., Watanabe T., Gotoh K., Totoki Y., Toyoda A., Ikawa M. et al. 2008 DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambertini L. 2014 Genomic imprinting: sensing the environment and driving the fetal growth. Curr. Opin. Pediatr. 26, 237–242.

    Article  PubMed  Google Scholar 

  • Leddy M. A., Power M. L. and Schulkin J. 2008 The impact of maternal obesity on maternal and fetal health. Rev. Obstet. Gynecol. 1, 170–178.

    PubMed  PubMed Central  Google Scholar 

  • Li E., Bestor T. H. and Jaenisch R. 1992 Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.

    Article  CAS  PubMed  Google Scholar 

  • Li X., Ito M., Zhou F., Youngson N., Zuo X., Leder P. and Ferguson-Smith A. C. 2008 A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15, 547–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lof M., Olausson H., Bostrom K., Janerot-Sjoberg B., Sohlstrom A. and Forsum E. 2005 Changes in basal metabolic rate during pregnancy in relation to changes in body weight and composition, cardiac output, insulin-like growth factor I, and thyroid hormones and in relation to fetal growth. Am. J. Clin. Nutr. 81, 678–685.

    CAS  PubMed  Google Scholar 

  • Maccani J. Z. and Maccani M. A. 2015 Altered placental DNA methylation patterns associated with maternal smoking: current perspectives. Adv. Genomics Genet. 2015, 205–214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maccani M. A. and Marsit C. J. 2009 Epigenetics in the placenta. Am. J. Reprod. Immunol. 62, 78–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mainigi M. A., Olalere D., Burd I., Sapienza C., Bartolomei M. and Coutifaris C. 2014 Peri-implantation hormonal milieu: elucidating mechanisms of abnormal placentation and fetal growth. Biol. Reprod. 90, 26.

    Article  PubMed  CAS  Google Scholar 

  • Malki K., Koritskaya E., Harris F., Bryson K., Herbster M. and Tosto M. G. 2016 Epigenetic differences in monozygotic twins discordant for major depressive disorder. Transl. Psychiatry 6, e839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manikkam M., Guerrero-Bosagna C., Tracey R., Haque M. M. and Skinner M. K. 2012 Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One 7, e31901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann M. R., Lee S. S., Doherty A. S., Verona R. I., Nolen L. D., Schultz R. M. and Bartolomei M. S. 2004 Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131, 3727–3735.

    Article  CAS  PubMed  Google Scholar 

  • Mayer W., Smith A., Fundele R. and Haaf T. 2000 Spatial separation of parental genomes in preimplantation mouse embryos. J. Cell Biol. 148, 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ment L. R. and Vohr B. R. 2008 Preterm birth and the developing brain. Lancet Neurol. 7, 378–379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miech R. P. 2010 The role of fetal microchimerism in autoimmune disease. Int. J. Clin. Exp. Med. 3, 164–168.

    PubMed  PubMed Central  Google Scholar 

  • Mill J., Tang T., Kaminsky Z., Khare T., Yazdanpanah S., Bouchard L. et al. 2008 Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am. J. Hum. Genet. 82, 696–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore L. D., Le T. and Fan G. 2013 DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38.

    Article  CAS  PubMed  Google Scholar 

  • Mosca M., Curcio M., Lapi S., Valentini G., D’Angelo S., Rizzo G. and Bombardieri S. 2003 Correlations of Y chromosome microchimerism with disease activity in patients with SLE: analysis of preliminary data. Ann. Rheum. Dis. 62, 651–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagamani M., McDonough P. G., Ellegood J. O. and Mahesh V. B. 1978 Maternal and amniotic fluid 17 alpha-hydroxyprogesterone levels during pregnancy: diagnosis of congenital adrenal hyperplasia in utero. Am. J. Obstet. Gynecol. 130, 791–794.

    Article  CAS  PubMed  Google Scholar 

  • Nelissen E. C., van Montfoort A. P., Dumoulin J. C. and Evers J. L. 2011 Epigenetics and the placenta. Hum. Reprod. Update 17, 397–417.

    Article  CAS  PubMed  Google Scholar 

  • O’Leary M. A., Bloch J. I., Flynn J. J., Gaudin T. J., Giallombardo A., Giannini N. P. et al. 2013 The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339, 662–667.

    Article  PubMed  CAS  Google Scholar 

  • Odom L. N. and Segars J. 2010 Imprinting disorders and assisted reproductive technology. Curr. Opin. Endocrinol. Diabetes Obes. 17, 517–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson D., Ekstrom M. and Forsberg B. 2012 Temporal variation in air pollution concentrations and preterm birth-a population based epidemiological study. Int. J. Environ. Res. Public Health 9, 272–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald J., Engemann S., Lane N., Mayer W., Olek A., Fundele R. et al. 2000 Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478.

    Article  CAS  PubMed  Google Scholar 

  • Ozanne S. E., Jensen C. B., Tingey K. J., Storgaard H., Madsbad S. and Vaag A. A. 2005 Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia 48, 547–552.

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan N., Jia D., Geary-Joo C., Wu X., Ferguson-Smith A. C., Fung E. et al. 2013 Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155, 81–93.

    Article  CAS  PubMed  Google Scholar 

  • Padoan A., Rigano S., Ferrazzi E., Beaty B. L., Battaglia F. C. and Galan H. L. 2004 Differences in fat and lean mass proportions in normal and growth-restricted fetuses. Am. J. Obstet. Gynecol. 191, 1459–1464.

    Article  PubMed  Google Scholar 

  • Palmeira P., Quinello C., Silveira-Lessa A. L., Zago C. A. and Carneiro-Sampaio M. 2012 IgG placental transfer in healthy and pathological pregnancies. Clin. Dev. Immunol. 2012, 985646.

    Article  PubMed  CAS  Google Scholar 

  • Parham P. 2004 NK cells and trophoblasts: partners in pregnancy. J. Exp. Med. 200, 951–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasini D., Bracken A. P., Jensen M. R., Lazzerini Denchi E. and Helin K. 2004 Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penninga L. and Longo L. D. 1998 Ovine placentome morphology: effect of high altitude, long-term hypoxia. Placenta 19, 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Pentsuk N. and van der Laan J. W. 2009 An interspecies comparison of placental antibody transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res. B. Dev. Reprod. Toxicol. 86, 328–344.

    CAS  Google Scholar 

  • Perez-Torrero E., Torrero C. and Salas M. 2001 Effects of perinatal undernourishment on neuronal development of the facial motor nucleus in the rat. Brain Res. 905, 54–62.

    Article  CAS  PubMed  Google Scholar 

  • Petit C., Chevrier C., Durand G., Monfort C., Rouget F., Garlantezec R. and Cordier S. 2010 Impact on fetal growth of prenatal exposure to pesticides due to agricultural activities: a prospective cohort study in Brittany, France. Environ. Health 9, 71.

    Article  PubMed  Google Scholar 

  • Plessinger M. A. and Woods Jr J. R. 1993 Maternal, placental, and fetal pathophysiology of cocaine exposure during pregnancy. Clin. Obstet. Gynecol. 36, 267–278.

    Article  CAS  PubMed  Google Scholar 

  • Poutahidis T., Varian B. J., Levkovich T., Lakritz J. R., Mirabal S., Kwok C. et al. 2015 Dietary microbes modulate transgenerational cancer risk. Cancer Res. 75, 1197–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puschendorf M., Terranova R., Boutsma E., Mao X., Isono K., Brykczynska U. et al. 2008 PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat. Genet. 40, 411–420.

    Article  CAS  PubMed  Google Scholar 

  • Reik W. and Lewis A. 2005 Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat. Rev. Genet. 6, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Roh C. R., Budhraja V., Kim H. S., Nelson D. M. and Sadovsky Y. 2005 Microarray-based identification of differentially expressed genes in hypoxic term human trophoblasts and in placental villi of pregnancies with growth restricted fetuses. Placenta 26, 319–328.

    Article  CAS  PubMed  Google Scholar 

  • Roifman M., Choufani S., Turinsky A. L., Drewlo S., Keating S., Brudno M. et al. 2016 Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction. Clin. Epigenet. 8, 70.

    Article  Google Scholar 

  • Romano-Keeler J. and Weitkamp J. H. 2015 Maternal influences on fetal microbial colonization and immune development. Pediatr. Res. 77, 189–195.

    Article  PubMed  Google Scholar 

  • Rossant J. and Cross J. C. 2001 Placental development: lessons from mouse mutants. Nat. Rev. Genet. 2, 538–548.

    Article  CAS  PubMed  Google Scholar 

  • Roth M., Neuner F. and Elbert T. 2014 Transgenerational consequences of PTSD: risk factors for the mental health of children whose mothers have been exposed to the Rwandan genocide. Int. J. Ment. Health Syst. 8, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruebner M., Strissel P. L., Ekici A. B., Stiegler E., Dammer U., Goecke T. W. et al. 2013 Reduced syncytin-1 expression levels in placental syndromes correlates with epigenetic hypermethylation of the ERVW-1 promoter region. PLoS One 8, e56145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell S. L., Gold M. J., Hartmann M., Willing B. P., Thorson L., Wlodarska M. et al. 2012 Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13, 440–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford J. N. 2009 Fetal signaling through placental structure and endocrine function: illustrations and implications from a nonhuman primate model. Am. J. Hum. Biol. 21, 745–753.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sachdeva P., Patel B. G. and Patel B. K. 2009 Drug use in pregnancy; a point to ponder! Indian J. Pharm. Sci. 71, 1–7.

    Google Scholar 

  • Santos F., Hendrich B., Reik W. and Dean W. 2002 Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182.

    Article  CAS  PubMed  Google Scholar 

  • Satokari R., Gronroos T., Laitinen K., Salminen S. and Isolauri E. 2009 Bifidobacterium and Lactobacillus DNA in the human placenta. Lett. Appl. Microbiol. 48, 8–12.

    Article  CAS  PubMed  Google Scholar 

  • Schneider E., El Hajj N., Richter S., Roche-Santiago J., Nanda I., Schempp W. et al. 2014 Widespread differences in cortex DNA methylation of the “language gene” CNTNAP2 between humans and chimpanzees. Epigenetics 9, 533–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder D. I., Blair J. D., Lott P., Yu H. O., Hong D., Crary F. et al. 2013 The human placenta methylome. Proc. Natl. Acad. Sci. USA 110, 6037–6042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serman L., Vlahovic M., Sijan M., Bulic-Jakus F., Serman A., Sincic N. et al. 2007 The impact of 5-azacytidine on placental weight, glycoprotein pattern and proliferating cell nuclear antigen expression in rat placenta. Placenta 28, 803–811.

    Article  CAS  PubMed  Google Scholar 

  • Siervo G. E., Vieira H. R., Ogo F. M., Fernandez C. D., Goncalves G. D., Mesquita S. F. et al. 2015 Spermatic and testicular damages in rats exposed to ethanol: influence of lipid peroxidation but not testosterone. Toxicology 330, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Smallwood S. A. and Kelsey G. 2012 De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Sood R., Zehnder J. L., Druzin M. L. and Brown P. O. 2006 Gene expression patterns in human placenta. Proc. Natl. Acad. Sci. USA 103, 5478–5483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spungin B., Avolio J., Arden S. and Satir P. 1987 Dynein arm attachment probed with a non-hydrolyzable ATP analog. Structural evidence for patterns of activity. J. Mol. Biol. 197, 671–677.

    Article  CAS  PubMed  Google Scholar 

  • Stevens A. M. 2016 Maternal microchimerism in health and disease. Best Pract. Res. Clin. Obstet. Gynaecol. 31, 121–130.

    Article  PubMed  Google Scholar 

  • Stouder C. and Paoloni-Giacobino A. 2010 Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 139, 373–379.

    Article  CAS  PubMed  Google Scholar 

  • Stout M. J., Conlon B., Landeau M., Lee I., Bower C., Zhao Q. et al. 2013 Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am. J. Obstet. Gynecol. 208, 226 e1–e7.

    Google Scholar 

  • Suzuki T., Asami M. and Perry A. C. 2014 Asymmetric parental genome engineering by Cas9 during mouse meiotic exit. Sci. Rep. 4, 7621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M., Sugimoto K., Nozaki M., Ueda J., Ohta T., Ohki M. et al. 2002 G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M., Ueda J., Fukuda M., Takeda N., Ohta T., Iwanari H. et al. 2005 Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19, 815–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan X. W., Liao H., Sun L., Okabe M., Xiao Z. C. and Dawe G. S. 2005 Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier? Stem Cells 23, 1443–1452.

    Article  CAS  PubMed  Google Scholar 

  • Tunster S. J., Jensen A. B. and John R. M. 2013 Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 145, R117–R137.

    Article  CAS  PubMed  Google Scholar 

  • Turan N., Katari S., Gerson L. F., Chalian R., Foster M. W., Gaughan J. P. et al. 2010 Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet. 6, e1001033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Montfoort A. P., Hanssen L. L., de Sutter P., Viville S., Geraedts J. P. and de Boer P. 2012 Assisted reproduction treatment and epigenetic inheritance. Hum. Reprod. Update 18, 171–197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varner M. W. and Esplin M. S. 2005 Current understanding of genetic factors in preterm birth. BJOG 112, suppl 1, 28–31.

    Article  CAS  PubMed  Google Scholar 

  • Waller-Wise R. 2011 Umbilical cord blood: information for childbirth educators. J. Perinat. Educ. 20, 54–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterland R. A., Kellermayer R., Laritsky E., Rayco-Solon P., Harris R. A., Travisano M. et al. 2010 Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 6, e1001252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins A. J., Lucas E. S., Marfy-Smith S., Bates N., Kimber S. J. and Fleming T. P. 2015 Maternal nutrition modifies trophoblast giant cell phenotype and fetal growth in mice. Reproduction 149, 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildman D. E., Chen C., Erez O., Grossman L. I., Goodman M. and Romero R. 2006 Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc. Natl. Acad. Sci. USA 103, 3203–3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y., Wang C., Zhou W., Shi Y., Guo P., Liu Y. et al. 2016 Elevation of circulating miR-210-3p in high-altitude hypoxic environment. Front. Physiol. 7, 84.

    PubMed  PubMed Central  Google Scholar 

  • Yanase T., Imai T., Simpson E. R. and Waterman M. R. 1992 Molecular basis of 17alpha-hydroxylase/17,20-lyase deficiency. J. Steroid Biochem. Mol. Biol. 43, 973–979.

    Article  CAS  PubMed  Google Scholar 

  • Yang K. 1997 Placental 11 beta-hydroxysteroid dehydrogenase: barrier to maternal glucocorticoids. Rev. Reprod. 2, 129–132.

    Article  CAS  PubMed  Google Scholar 

  • Yuen R. K., Penaherrera M. S., von Dadelszen P., McFadden D. E. and Robinson W. P. 2010 DNA methylation profiling of human placentas reveals promoter hypomethylation of multiple genes in early-onset preeclampsia. Eur. J. Hum. Genet. 18, 1006–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusuf K. and Kliman H. J. 2008 The fetus, not the mother, elicits maternal immunologic rejection: lessons from discordant dizygotic twin placentas. J. Perinat. Med. 36, 291–296.

    Article  PubMed  Google Scholar 

  • Zamudio S., Baumann M. U. and Illsley N. P. 2006 Effects of chronic hypoxia in vivo on the expression of human placental glucose transporters. Placenta 27, 49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J., Landy H. J., Branch D. W., Burkman R., Haberman S., Gregory K. D. et al. 2010 Contemporary patterns of spontaneous labor with normal neonatal outcomes. Obstet. Gynecol. 116, 1281–1287.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng J., Xiao X., Zhang Q. and Yu M. 2014 DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life. Br. J. Nutr. 112, 1850–1857.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Council for Scientific and Industrial Research (CSIR) under project EpiHeD (BSC0118). G. Giridharan is gratefully acknowledged for help with figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Surabhi Srivastava or Rakesh K. Mishra.

Additional information

Corresponding editor: Indrajit Nanda

Appendix

Appendix

Epigenetic mechanisms govern genome regulation

Histones wrap the DNA around a core octamer to form nucleosomes that generate higher order chromatin folding and architecture to govern access to DNA for transcription machinery and other cellular processes. Chemical modifications of the N-terminals of the histone tails constitute a dynamic mechanism to fine tune gene expression in conjunction with DNA methylation. The methylation of lysine residues of histone H3 has been most extensively studied in the context of transcriptional control; trimethylation of lysine 4 (H3K4me3) and acetylation of lysine 9 (H3K9ac) at gene promoters and acetylation of lysine 27 (H3K27ac) and methylation of lysine 4 (H3K4me) at enhancers are strongly associated with gene activation. Similarly, trimethylation of lysine residues 27 and 9 (H3K27me3 and H3K9me3) promote gene repression through polycomb (PcG) and HP1-heterochromatin mediated mechanisms, respectively. Such modifications are catalyzed by histone acetyltransferases (HATs) / histone deacetylases (HDACs) and histone methyl transferases (HMTs) / histone demethylases (HDMs) that add or remove the acetyl or methyl groups, respectively. The presence of these marks causes recruitment of a diverse array of proteins that ultimately regulate genome activation. There are a large number of histone variants and their modifications associated with genome regulation, and these are now being studied in the light of their inheritance through reproduction (Bunkar et al. 2016); only a few of these have been investigated in placental tissues (Nelissen et al. 2011).

The methylation of CpG dinucleotides in the genome is crucial in the context of gene expression, especially at CpG islands located near gene promoters. These are mostly unmethylated to allow transcription and their methylation is associated with gene silencing. DNA methylation is brought about by DNA methyltransferases (DNMTs) that are essential for development and survival since DNMT mutants are not viable (Li et al. 1992). Demethylation of DNA is also critical during development and involves both ‘passive’ and ‘active’ mechanisms to reprogramme the foetal genome (Moore et al. 2013) by erasure of parental methylation marks and resetting of transcriptional profiles for differentiation. MicroRNAs (miRNAs) are short noncoding RNAs of approximately 20 nt length. Unlike mRNAs, they do not code for functional proteins but regulate expression of their target genes. Tissue specific miRNAs are increasingly being discovered to be associated with key biological processes. MiRNA expression is linked to DNA methylation levels (Han et al. 2007) and methylation mutants show miRNA dysregulation and vice versa (Han et al. 2013). MiRNAs also target chromatin remodelling complexes, thus directly and indirectly modulating the setting of histone marks and demonstrating the interconnectedness and redundant nature of epigenetic programmes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sailasree, S.P., Srivastava, S. & Mishra, R.K. The placental gateway of maternal transgenerational epigenetic inheritance. J Genet 96, 465–482 (2017). https://doi.org/10.1007/s12041-017-0788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-017-0788-5

Keywords

Navigation