Skip to main content
Log in

Isolation, characterization and mapping of genes differentially expressed during fibre development between Gossypium hirsutum and G. barbadense by cDNA-SRAP

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Gossypium hirsutum and G. barbadense are two cultivated tetraploid cotton species with differences in fibre quality. The fibre of G. barbadense is longer, stronger and finer than that of G. hirsutum. To isolate genes expressed differently between the two species during fibre development, cDNA-SRAP (sequence-related amplified polymorphism) was applied. This technique was used to analyse genes at different stages of fibre development in G. hirsutum cv. Emian22 and G. barbadense acc. 3-79, the parents of our interspecific mapping population. A total of 4096 SRAP primer combinations were used to screen polymorphism between the DNA of the parents, and 275 highly polymorphic primers were picked out to analyse DNA and RNA from leaves and fibres at different developmental stages of the parents. A total of 168 DNA fragments were isolated from gels and sequenced: 54, 30, 38 and 41 from fibres of 5, 10, 15 and 20 days post-anthesis, respectively, and five from multi stages. To genetically map these sequences, 104 sequence-specific primers were developed and were used to screened polymorphism between the mapping parents. Finally, six markers were mapped on six chromosomes of our backbone interspecific genetic map. This work can give us a primary knowledge of differences in mechanism of fibre development between G. hirsutum and G. barbadense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alabady M. S., Eunseog Y. and Wilkins T. A. 2008 Double feature selection and cluster analyses in mining of microarray data from cotton. BMC Genomics 9, 95.

    Article  Google Scholar 

  • Al-Ghazi Y., Bourot S., Arioli T., Dennis E. S. and Llewellyn D. J. 2009 Transcript profiling during fibre development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fibre quality. Plant Cell Physiol. 50, 1364–1381.

    Article  PubMed  CAS  Google Scholar 

  • Arpat A. B., Waugh M., Sullivan J. P., Gonzales M., Frisch D., Main D. et al. 2004 Functional genomics of cell elongation in developing cotton fibres. Plant Mol. Biol. 54, 911–929.

    Article  PubMed  CAS  Google Scholar 

  • Bao Y., Hu G., Flagel L. E., Salmon A., Bezanilla M., Paterson A. H. et al. 2011 Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc. Natl. Acad. Sci. USA 108, 21152–21157.

    Article  PubMed  CAS  Google Scholar 

  • Basra A. S. and Malik C. P. 1984 Development of the cotton fibre. Int. Rev. Cytol. 89, 65–113.

    Article  CAS  Google Scholar 

  • Chaudhary B., Hovav R., Rapp R., Verma N., Udall J. A. and Wendel J. F. 2008 Global analysis of gene expression in cotton fibres from wild and domesticated Gossypium barbadense. Evol. Dev. 10, 567–582.

    Article  PubMed  CAS  Google Scholar 

  • Chen X., Guo W., Liu B., Zhang Y., Song X., Chen Y. et al. 2012 Molecular mechanisms of fibre differential development between G. barbadense and G. hirsutum revealed by genetical genomics. PLoS ONE 7, e30056.

    Article  Google Scholar 

  • Claverie M., Souquet M., Jean J., Forestier-Chiron N., Lepitre V., Prè M. et al. 2012 cDNA-AFLP-based genetical genomics in cotton fibres. Theor. Appl. Genet. 124, 665–683.

    Article  PubMed  CAS  Google Scholar 

  • Conesa A., Götz S., Garcia-Gomez J. M., Terol J., Talon M. and Robles M. 2005 Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676.

    Article  PubMed  CAS  Google Scholar 

  • Götz S., García-Gómez J. M., Terol J., Williams T. D., Nueda M. J., Robles M. et al. 2008 High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435.

    Article  PubMed  Google Scholar 

  • Gou J. Y., Wang L. J., Chen S. P., Hu W. L. and Chen X. Y. 2007 Gene expression and metabolite profiles of cotton fibre during cell elongation and secondary cell wall syntheisis. Cell Res. 17, 422–434.

    PubMed  CAS  Google Scholar 

  • He D. H., Lin Z. X., Zhang X. L., Nie Y. C., Guo X. P., Zhang Y. X. and Li W. 2007 QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153, 181–197.

    Article  CAS  Google Scholar 

  • Hinchliffe D. J., Meredith W. R., Yeater K. M., Kim H. J., Woodward A. W., Chen Z. J. and Triplett B. A. 2010 Near-isogenic cotton germplasm lines that differ in fibre-bundle strength have temporal differences in fibre gene expression patterns as revealed by comparative high-throughput profiling. Theor. Appl. Genet. 120, 1347–1366.

    Article  PubMed  CAS  Google Scholar 

  • Hovav R., Udall J., Hovav E., Rapp R., Flagel L. and Wendel J. 2008 A majority of cotton genes are expressed in single-celled fibre. Planta 227, 319–329.

    Article  PubMed  CAS  Google Scholar 

  • Ji S. J., Lu Y. C., Feng J. X., Wei G., Li J., Shi Y. H. et al. 2003 Isolation and analyses of genes preferentially expressed during early cotton fibre development by substractive PCR and cDNA array. Nucleic Acids Res. 31, 2534–2543.

    Article  PubMed  CAS  Google Scholar 

  • John M. E. 1995 Characterization of a cotton (Gossypium hirsutum L.) fibre-mRNA (Fb-b6). Plant Physiol. 107, 1478–1486.

    Google Scholar 

  • John M. E. and Crow L. J. 1992 Gene expression in cotton (Gossypium hirsutum L.) fibre: Cloning of the mRNAs. Proc. Natl. Acad. Sci. USA 89, 5769–5773.

    Article  PubMed  CAS  Google Scholar 

  • John M. E. and Keller G. 1995 Characterization of mRNA for a proline-rich protein of cotton fibres. Plant Physiol. 108, 669–676.

    Article  PubMed  CAS  Google Scholar 

  • Kim H. J. and Triplett B. A. 2001 Cotton fibre growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127, 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  • Kosambi D. D. 1994 The estimation of map distance from recombination values. Ann. Eugen. 12, 172–175.

    Google Scholar 

  • Lacape J. M., Nguyen T. B., Courtois B., Belot J. L., Giband M., Gourlot J. P. et al. 2005 QTL analysis of cotton fibre quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci. 45, 123–140.

    CAS  Google Scholar 

  • Lacape J. M., Llewellyn D., Jacobs J., Arioli T., Becker D., Calhoun S. et al. 2010 Meta-analysis of cotton fibre quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol. 10, 132.

    Article  PubMed  Google Scholar 

  • Lang A. G. 1938 The origin of lint and fuzz hairs of cotton. J. Agric. Res. 56, 507–521.

    Google Scholar 

  • Lee J. J., Hassan O. S. S., Gao W., Wei N. E., Kohel R. J., Chen X. Y. et al. 2006 Developmental and gene expression analyses of a cotton naked seed mutant. Planta 223, 418–432.

    Article  PubMed  CAS  Google Scholar 

  • Lee J. J., Woodward A. W. and Chen Z. J. 2007 Gene expression changes and early events in cotton fibre development. Ann. Bot. 100, 1391–1401.

    Article  PubMed  CAS  Google Scholar 

  • Li G. and Quiros C. F. 2001 Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461.

    Article  CAS  Google Scholar 

  • Li G., Gao M., Yang B. and Quiros C. F. 2003 Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor. Appl. Genet. 107, 168–180.

    Article  PubMed  CAS  Google Scholar 

  • Lin Z. X., He D. J. and Zhang X. L. 2005 Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breeding 124, 180–187.

    Article  CAS  Google Scholar 

  • Lin Z., Zhang Y., Zhang X. and Guo X. 2009 A high-density integrative linkage map for Gossypium hirsutum. Euphytica 166, 35–45.

    Article  Google Scholar 

  • Liu D., Zhang X., Tu L., Zhu L. and Guo X. 2006 Isolation by suppression-subtractive hybridization of genes preferentially expressed during early and later fibre development stages in cotton. Mol. Biol. 40, 741–749.

    Article  CAS  Google Scholar 

  • Liu H. W., Wang X. F., Pan Y. X., Shi R. F., Zhang G. Y. and Ma Z. Y. 2009 Mining cotton fibre strength candidate genes based on transcriptome mapping. Chin. Sci. Bull. 54, 4651–4657.

    Article  CAS  Google Scholar 

  • Liu R., Wang B., Guo W., Wang L. and Zhang T. 2011 Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F2. Theor. Appl. Genet. 123, 439–454.

    Article  PubMed  CAS  Google Scholar 

  • Loguercio L. L., Zhang J. Q. and Wilkins T. A. 1999 Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol. Gen. Genet. 261, 660–671.

    Article  CAS  Google Scholar 

  • Ma X., Xing C., Guo L., Gong Y., Wang H., Zhao Y. and Wu J. 2008 Analysis of differentially expressed genes in genic male sterility cotton (Gossypium hirsutum L.) using cDNA-AFLP. J. Genet. Genomics 34, 536–543.

    Article  Google Scholar 

  • Mei M., Syed N. H., Gao W., Thaxton P. M., Smith C. W., Stelly D. M. and Chen Z. J. 2004 Genetic mapping and QTL analysis of fibre related traits in cotton (Gossypium). Theor. Appl. Genet. 108, 280–291.

    Article  PubMed  CAS  Google Scholar 

  • Orford S. J. and Timmis J. N. 1998 Specific expression of an expansin gene during elongation of cotton fibres. Biochim. Biophys. Acta 1398, 342–346.

    Article  PubMed  CAS  Google Scholar 

  • Pan Y. X., Ma J., Zhang G. Y., Han G. Y., Wang X. F. and Ma Z. Y. 2007 cDNA-AFLP profiling for the fibre development stage of secondary cell wall synthesis and transcriptome mapping in cotton. Chin. Sci. Bull. 52, 2358–2364.

    Article  CAS  Google Scholar 

  • Paterson A. H., Brubaker C. and Wendel J. F. 1993 A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol. Biol. Rep. 11, 122–127.

    Article  CAS  Google Scholar 

  • Rapp R. A., Haigler C. H., Flagel L., Hovav R. H., Udall J. A. and Wendel J. F. 2010 Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol. 8, 139.

    Article  PubMed  Google Scholar 

  • Ruan Y. L. and Chourey P. S. 1998 A fibreless seed mutation in cotton is associated with lack of fibre cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol. 118, 399–406.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y. H., Zhu S. W., Mao X. Z., Feng J. X., Qin Y. M., Zhang L. et al. 2006 Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fibre cell elongation. Plant Cell 18, 651–664.

    Article  PubMed  CAS  Google Scholar 

  • Smart L. B., Vojdani F., Maeshima M. and Wilkins T. A. 1998 Genes involved in osmoregulation during turgordriven cell expansion of developing cotton fibres are differentially regulated. Plant Physiol. 116, 1539–1549.

    Article  PubMed  CAS  Google Scholar 

  • Song P. and Allen R. D. 1997 Identification of a cotton fibre-specific acyl carrier protein cDNA by differential display. Biochim. Biophys. Acta 1351, 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Stam P. 1993 Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J. 3, 739–744.

    Article  CAS  Google Scholar 

  • Taliercio E. W. and Boykin D. 2007 Analysis of gene expression in cotton fibre initials. BMC Plant Biol. 7, 22.

    Article  PubMed  Google Scholar 

  • Tu L. L., Zhang X. L., Liang S. G., Liu D. Q., Zhu L. F., Zeng F. C. et al. 2007 Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fibre development. Plant Cell Rep. 26, 1309–1320.

    Article  PubMed  CAS  Google Scholar 

  • Udall J. A., Swanson J. M., Haller K., Rapp R. A., Sparks M. E., Hatfield J. et al. 2006 A global assembly of cotton ESTs. Genome Res. 16, 441–450.

    Article  PubMed  Google Scholar 

  • Udall J. A., Flagel L. E., Cheung F., Woodward A. W., Hovav R., Rapp R. A. et al. 2007 Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics 8, 81.

    Article  PubMed  Google Scholar 

  • Wang Q. Q., Liu F., Chen X. S., Ma X. J., Zeng H. Q. and Yang Z. M. 2010 Transcriptome profiling of early developing cotton fibre by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96, 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker D. J. and Triplett B. A. 1999 Gene-specific changes in α-tubulin transcript accumulation in developing cotton fibres. Plant Physiol. 121, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Wu Y., Rozenfeld S., Defferrard A., Ruggiero K., Udall J. A., Kim H. et al. 2005 Cycloheximide treatment of cotton ovules alters the abundance of specific classes of mRNAs and generates novel ESTs for microarray expression profiling. Mol. Gen. Genomics 274, 477–493.

    Article  CAS  Google Scholar 

  • Wu Y., Machado A. C., White R. G., Llewellyn D. J. and Dennis E. S. 2006 Identification of early genes expressed during cotton fibre initiation using cDNA microarrays. Plant Cell Physiol. 47, 107–127.

    Article  PubMed  CAS  Google Scholar 

  • Wu Y., Llewellyn D. J., White R., Ruggiero K., Al-Ghazi Y. and Dennis E. S. 2007 Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta 226, 1475–1490.

    Article  PubMed  CAS  Google Scholar 

  • Wu Z., Soliman K. M., Bolton J. J., Saha S. and Jenkins N. J. 2008 Identification of differentially expressed genes associated with cotton fibre development in a chromosomal substitution line (CS-B22sh). Funct. Integr. Genomics 8, 165–174.

    Article  PubMed  Google Scholar 

  • Yang S. S., Cheung F., Lee J. J., Ha M., Wei N. E., Sze S.-H. et al. 2006 Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fibre cell development in allotetraploid cotton. Plant J. 47, 761–775.

    Article  CAS  Google Scholar 

  • Yu Y., Yuan D. J., Liang S. G., Li X. M., Wang X. Q., Lin Z. X. and Zhang X. L. 2011 Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12, 15.

    Article  PubMed  CAS  Google Scholar 

  • Yuan D., Tu L. and Zhang X. 2011 Generation, annotation and analysis of first large-scale expressed sequence tags from developing fibre of Gossypium barbadense L. PLoS ONE 6, e22758.

    Article  Google Scholar 

  • Zhang D., Hrmova M., Wan C. H., Wu C., Balzen J., Cai W. et al. 2004 Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol. Biol. 54, 353–372.

    Article  PubMed  CAS  Google Scholar 

  • Zhu L. F., Tu L. L., Zhen F. C., Liu D. Q. and Zhang X. L. 2005 An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agromomica Sin. 31, 1657–1659.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National 863 High Technology Project (no. 2012AA101108-3) and the National Basic Research Program (no. 2010CB126001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZHONGXU LIN.

Additional information

[Liu C., Yuan D., Zhang X. and Lin Z. 2013 Isolation, characterization and mapping of genes differentially expressed during fibre development between Gossypium hirsutum and G. barbadense by cDNA-SRAP. J. Genet. 92, xx–xx]

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 541 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

LIU, C., YUAN, D., ZHANG, X. et al. Isolation, characterization and mapping of genes differentially expressed during fibre development between Gossypium hirsutum and G. barbadense by cDNA-SRAP. J Genet 92, 175–181 (2013). https://doi.org/10.1007/s12041-013-0238-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-013-0238-y

Keywords

Navigation