Skip to main content
Log in

Mapping of the multifoliate pinna (mfp) leaf-blade morphology mutation in grain pea Pisum sativum

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The multifoliate pinna (mfp) mutation alters the leaf-blade architecture of pea, such that simple tendril pinnae of distal domain are replaced by compound pinna blades of tendrilled leaflets in mfp homozygotes. The MFP locus was mapped with reference to DNA markers using F2 and F2:5 RIL as mapping populations. Among 205 RAPD, 27 ISSR and 35 SSR markers that demonstrated polymorphism between the parents of mapping populations, three RAPD markers were found linked to the MFP locus by bulk segregant analyses on mfp/mfp and MFP/MFP bulks assembled from the F2:5 population. The segregational analysis of mfp and 267 DNA markers on 96 F2 plants allowed placement of 26 DNA markers with reference to MFP on a linkage group. The existence of common markers on reference genetic maps and MFP linkage group developed here showed that MFP is located on linkage group IV of the consensus genetic map of pea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert G., Morin J., Jacquin F., Loridon K., Quillet M. C., Petit A. et al. 2006 Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor. Appl. Genet. 112, 1024–1041.

    Article  PubMed  CAS  Google Scholar 

  • Blixt S. 1972 Mutation genetics in Pisum. Agri. Hort. Genet. 30, 1–293.

    Google Scholar 

  • Champagne C. E. M., Goliber T. E., Wojciechowski M. F., Mei R. W., Townsley B. T., Wang K. et al. 2007 Compound leaf development and evolution in the legumes. Plant Cell 19, 3369–3378.

    Article  PubMed  CAS  Google Scholar 

  • de Vilmorin P. and Bateson W. 1911 A case of gametic coupling in Pisum. Proc. R. Soc. London. Ser. B. 84, 9–11.

    Article  Google Scholar 

  • Dirlewanger F., Issac P. G., Ranade S., Belajouza M., Cousin R. D. E. and Vienne D. 1994 Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor. Appl. Genet. 88, 17–27.

    Article  CAS  Google Scholar 

  • Doyle J. J. and Doyle J. L. 1990 Isolation of plant DNA from fresh tissue. Focus 12, 13–15.

    Google Scholar 

  • Ellis T. H. N. and Poyser S. J. 2002 An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol. 153, 17–25.

    Article  CAS  Google Scholar 

  • Ellis T. H. N., Turner L., Helleus R. P., Lee D., Harker C. L., Enard C. et al. 1992 Linkage maps in pea. Genetics 130, 649–663.

    PubMed  CAS  Google Scholar 

  • Eujayl I., Sledge M. K., Wang L., May G. D., Chekhoyskiy K., Zwonitzer J. C. and Mian M. A. R. 2004 Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor. Appl. Genet. 108, 414–422.

    Article  PubMed  CAS  Google Scholar 

  • Gilpin B. J., Mccallum J. A., Frew T. J. and Timmerman-Vaughn G. M. 1997 A linkage map of pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor. Appl. Genet. 95, 1289–1299.

    Article  CAS  Google Scholar 

  • Goldenberg J. B. 1965 afila, a new mutation in pea (Pisum sativum L.). Bol. Genet. 1, 27–31.

    Google Scholar 

  • Gourlay C. W., Hofer J. M. I. and Ellis T. H. N. 2000 Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEATA, AFILA and TENDRILLESS. Plant Cell 12, 1279–1294.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez M. U., Vazpatto M. C., Huguet T., Cubero J. J., Moreno M. T. and Torres A.M. 2005 Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor. Appl. Genet. 110, 1210–1217.

    Article  PubMed  CAS  Google Scholar 

  • Hake S., Smith H. M. S., Holtan H., Magnani E., Mele G. and Ramirez J. 2004 The role of KNOX genes in plant development. Ann. Rev. Cell Dev. Biol. 20 125–151.

    Article  CAS  Google Scholar 

  • Hofer J., Turner I., Hellens R., Ambrose M., Mathews P., Michael A. and Ellis N. 1997 UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr. Biol. 7, 581–587.

    Article  PubMed  CAS  Google Scholar 

  • Hofer J., Gourlay C., Michael A. and Ellis T. H. N. 2001 Expression of a class I knotted-1 like homeobox gene is down-regulated in pea compound leaf primordia. Plant Mol. Biol. 45, 387–391.

    Article  PubMed  CAS  Google Scholar 

  • Irzykowska L. and Wolko B. 2004 Interval mapping of QTLs controlling yield-related traits and seed protein content in Pisum sativum. J. Appl. Genet. 45, 297–306.

    PubMed  Google Scholar 

  • Irzykowska L., Wolko B. and Swiecicki W. K. 2001 The genetic linkage map of pea (Pisum sativum L.) based on molecular, biochemical and morphological markers. Pisum Genet. 33, 13–18.

    Google Scholar 

  • Kosambi D. D. 1944 The estimation of map distance from recombination values. Ann. Eugen. 12, 172–175.

    Google Scholar 

  • Kujala V. 1953 Felderbse bie welcher die ganze blattspreite in ranken umgewandelt ist. Arch. Soc. Zoo. Bot. Fenn. Vanamo 8, 44–45.

    Google Scholar 

  • Kumar S., Rai S. K., Pandey-Rai S., Srivastava S. and Singh D. 2004 Regulation of unipinnate character in the distal tendrilled domain of compound leaf-blade by the gene MULTIFOLIATE PINNA (MFP) in pea Pisum sativum. Plant Sci. 166, 929–940.

    Article  CAS  Google Scholar 

  • Lamprecht H. 1933 Ein unifoliata — Typus von Pisum mit gleichzeitiger Pistilloidie. Hereditas 18, 56–64.

    Article  Google Scholar 

  • Lander E. S., Green P., Abrahamson J., Barolw A., Daly M., Lincoln S. and Newberg L. 1987 MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Laucou V., Haurogne K., Ellis N. and Rameau C. 1998 Genetic mapping in pea.1. RAPD-based genetic linkage map of Pisum sativum. Theor. Appl. Genet. 97, 905–915.

    Article  CAS  Google Scholar 

  • Lincoln S., Daly M. and Lander E. S. 1992 Constructing genetic maps with MAPMAKER/EXP 3.0 Whitehead Institute Technical Report, 3rd edition. Whitehouse Technical Institute, Cambridge, USA.

    Google Scholar 

  • Loridon K., Mcphee K., Morin J., Dubreuil P., Pilet-Nayel M. L., Aubert G. et al. 2005 Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor. Appl. Genet. 111, 1022–1031.

    Article  PubMed  CAS  Google Scholar 

  • Michelmore R.W., Paran J. and Kisseli R. V. 1991 Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc. Nat. Acad. Sci. USA 88, 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Pellew C. and Sverdrup A. 1923 New observations on the genetics of peas (Pisum sativum). J. Genet. 13, 125–131.

    Article  Google Scholar 

  • Prajapati S. and Kumar S. 2001 Role of LLD, a new locus for leaflet/pinna morphogenesis in Pisum sativum. J. Biosci. 26, 607–625.

    Article  PubMed  CAS  Google Scholar 

  • Prajapati S. and Kumar S. 2002 Interaction of the UNIFOLIATATENDRILLED ACACIA gene with AFILA and TENDRIL-LESS genes in the determination of leaf-blade growth and morphology in pea Pisum sativum. Plant Sci. 162, 713–721.

    Article  CAS  Google Scholar 

  • Remeau C., Denoue D., Fravel F., Haurogne K., Josserand J., Laucou V. et al. 1998 Genetic mapping of pea 2. Identification of RAPD and SCAR markers linked to genes affecting plant architecture. Theor. Appl. Genet. 97, 916–928.

    Article  Google Scholar 

  • Tattersall A. D., Turner L., Knox M. R., Ambrose M. J., Ellis T. H. N. and Hofer J. M. I. 2005 The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Plant Cell 17, 1046–1060.

    Article  PubMed  CAS  Google Scholar 

  • Taylor S., Hofer J. and Murfet I. 2001 Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences and leaves. Plant Cell 13, 31–46.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z., Luo Y., Li X., Wang L., Xu S., Yang J. et al. 2008 Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc. Nat. Acad. Sci. USA 105, 10414–10419.

    Article  PubMed  CAS  Google Scholar 

  • Weeden N. F. and Marx G. A. 1987 Further genetic analysis and linkage relationships of isozyme loci in the pea. J. Hered. 78, 153–159.

    Google Scholar 

  • Weeden N. F., Ellis T. H. N., Timmerman-Vaughan G. M., Swiecicki W. K., Rozov S. M. and Berdnikov V. A. 1998 A consensus linkage map of Pisum sativum. Pisum Genet. 30, 1–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, R.K., Kumar, A., Chaudhary, S. et al. Mapping of the multifoliate pinna (mfp) leaf-blade morphology mutation in grain pea Pisum sativum . J Genet 88, 227–232 (2009). https://doi.org/10.1007/s12041-009-0031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-009-0031-0

Keywords

Navigation