Skip to main content
Log in

Origin of new Brassica types from a single intergeneric hybrid between B. rapa and Orychophragmus violaceus by rapid chromosome evolution and introgression

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Many novel lines were established from an intergeneric mixoploid between Brassica rapa (2n = 20) and Orychophragmus violaceus (2n = 24) through successive selections for fertility and viability. Pedigrees of individual F2 plants were advanced to the 10th generation by selfing. Their breeding habit was self-compatible and different from the self-incompatibility of their female parent B. rapa, and these lines were reproductively isolated to different degrees from B. rapa and B. napus. The lines with high productivity showed not only a wide spectrum of phenotypes but also obvious variations in fatty acid profiles of seed oil and glucosinolate contents in seed meal. These lines had 2n = 36, 37, 38, 39 and 40, with 2n = 38 being most frequent (64.56%), and no intact O. violaceus chromosomes were detected by genomic in situ hybridization (GISH) analysis. Amplified fragment length polymorphism (AFLP) analyses revealed a high extent of variation in genomic compositions across all the lines. O. violaceus-specific bands, deleted bands in B. rapa and novel bands for two parents were detected in these lines, with novel bands being the most frequent. The morphological and genetic divergence of these novel types derived from a single hybrid is probably due to rapid chromosomal evolution and introgression, and provides new genetic resources for rapeseed breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Shehbaz I. A. 1985 The genera of Brassiceae (Cruciferae: Brassicaceae) in the southeastern United States. J. Arnold Arbor. 66, 279–351.

    Google Scholar 

  • Anderson E. 1949 Introgressive hybridization. John Wiley & Sons, New York.

    Google Scholar 

  • Anderson J. K. and Warwick S. I. 1998 Chromosome number evolution in the tribe Brassiceae (Brassicaceae): evidence from isozyme number. Plant Syst. Evol. 215, 255–285.

    Article  Google Scholar 

  • Arnold M. L. 2004 Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right? Plant Cell 16, 562–570.

    Article  PubMed  CAS  Google Scholar 

  • Cheng B. F., Heneen W. K. and Chen B. Y. 1994 Meiotic studies on a Brassica campestris-alboglabra monosomic addition line and derived B. campestris primary trisomics. Genome 37, 584–589.

    PubMed  CAS  Google Scholar 

  • Cronn R. and Wendel J. F. 2004 Cryptic trysts, genomic mergers, and plant speciation. New Phytol. 161, 133–142.

    Article  CAS  Google Scholar 

  • Dellaporta S. L., Wood J. and Hicks J. B. 1983 A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1, 19–21.

    Article  CAS  Google Scholar 

  • Ellstrand N. C., Whitkus R. and Rieseberg L. H. 1996 Distribution of spontaneous plant hybrids. Proc. Natl. Acad. Sci. USA 93, 5090–5093.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Campo C. 1980 Morphology and morphotaxonomy of the tribe Brassicaceae. In Brassica crops and wild allies (ed. S. Tsunoda, K. Hinata and C. Gómez-Campo), pp. 3–31. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Grant V. 1966 The origin of a new species of Gilia in a hybridization experiment. Genetics 54, 1189–1199.

    PubMed  Google Scholar 

  • Hua Y. W. and Li Z. Y. 2006 Genomic in situ hybridization analysis of Brassica napus × Orychophragmus violaceus hybrids and production of B. napus aneuploids. Plant Breed. 125, 144–149.

    Article  CAS  Google Scholar 

  • Hua Y. W., Liu M. and Li Z. Y. 2006 Parental genome separation and elimination of cells and chromosomes revealed by GISH and AFLP analyses in a Brassica carinata × Orychophragmus violaceus cross. Ann. Bot. 97, 993–998.

    Article  PubMed  Google Scholar 

  • Hu Q., Hansen L. N., Laursen J., Dixelus C. and Andersen S. B. 2002 Intergeneric hybrids between Brassica napus and Orychophragmus violaceus containing traits of agronomic importance for oilseed rape breeding. Theor. Appl. Genet. 105, 834–840.

    Article  PubMed  CAS  Google Scholar 

  • Leitch I. J. and Bennett M. D. 1997 Polyploidy in angiosperms. Trends Plant Sci. 2, 470–476.

    Article  Google Scholar 

  • Leitch A. R., Schwarzacher T., Jackson D. and Leitch I. J. 1994 In situ hybridization: a practical guide. Bios Scientific Publishers Ltd., Oxford.

    Google Scholar 

  • Li Z. and Heneen W. K. 1999 Production and cytogenetics of intergeneric hybrids between the three cultivated Brassica diploids and Orychophragmus violaceus. Theor. Appl. Genet. 99, 694–704.

    Article  Google Scholar 

  • Li Z., Liu H. L. and Luo P. 1995 Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor. Appl. Genet. 91, 131–136.

    Google Scholar 

  • Li Z., Wu J. G., Liu Y., Liu H. L. and Heneen W. K. 1998 Production and cytogenetics of the intergeneric hybrids Brassica juncea × Orychophragmus violaceus and B. carinata × O. violaceus. Theor. Appl. Genet. 96, 251–265.

    Article  Google Scholar 

  • Li Z. Y. and Ge X. G. 2007 Unique chromosome behavior and genetic control in Brassica × Orychophragmus wide hybrids: a review. Plant Cell Rep. 26, 701–710.

    Article  PubMed  CAS  Google Scholar 

  • Li Z. Y., Cartagena J. and Kukui K. 2005 Simultaneous detection of 45s and 5s rDNA genes in Orychophragmus violaceus by double fluorescence in situ hybridization. Cytologia 70, 459–466.

    Article  CAS  Google Scholar 

  • Liu M. and Li Z. Y. 2007 Genome doubling and chromosome elimination with fragment recombination leading to the formation of Brassica rapa-type plants with genomic alterations in crosses with Orychophragmus violaceus. Genome 50, 985–993.

    Article  PubMed  CAS  Google Scholar 

  • Ma N., Li Z. Y., Cartagena J. A. and Fukui K. 2006 GISH and AFLP analyses of novel Brassica napus lines derived from one hybrid between B. napus and Orychophragmus violaceus. Plant Cell Rep. 25, 1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Martinsen G. D., Whitham T. G., Turek R. J. and Keim P. 2001 Hybrid populations selectively filter gene introgression between species. Evolution 55, 1325–1335.

    PubMed  CAS  Google Scholar 

  • Peakall R., Bower C. C., Logan A. E. and Nicol H. I. 1997 Confirmation of the hybrid origin of Chiloglottis × pescottiana (Orchidaceae: Diurideae). 1. Genetic and morphometric evidence. Aust. J. Bot. 45, 839–855.

    Article  Google Scholar 

  • Rieseberg L. H. and Carney S. 1998 Plant hybridization. New Phytol. 140, 599–624.

    Article  Google Scholar 

  • Rieseberg L. H., Sinervo B, Linder C. R., Ungerer M. C. and Arias D. M. 1996 Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science 272, 741–745.

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg L. H., Raymond O., Rosenthal D. M., Lai Z., Livingstone K., Nakazato T. et al. 2003 Major ecological transition in wild sunflowers facilitated by hybridization. Science 301, 1211–1216.

    Article  PubMed  CAS  Google Scholar 

  • Snowdon R. J., Köhler W., Friedt W. and Köhler A. 1997 Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor. Appl. Genet. 95, 1320–1324.

    Article  CAS  Google Scholar 

  • Soltis D. E. and Soltis P. S. 1993 Molecular data and the dynamic nature of polyploidy. Crit. Rev. Plant Sci. 12, 243–273.

    Article  CAS  Google Scholar 

  • Stace C. A. 1987 Hybridization and the plant species. In Differentiation patterns in higher plants (ed. K. M. Urbanska), pp. 115–127. Academic Press, New York.

    Google Scholar 

  • Stebbins G. L. 1957 The hybrid origin of microspecies in the Elymus glaucus complex. Cytologia (Suppl) 36, 336–340.

    Google Scholar 

  • U N. 1935: Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap. J. Bot. 7, 389–452.

    Google Scholar 

  • Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M. et al. 1995 AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y. M., Dong Z. Y., Zhang Z. J., Lin X. Y., Shen Y., Zhou D. W. and Liu B. 2005 Extensive de novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics 170, 1945–1956.

    Article  PubMed  CAS  Google Scholar 

  • Wu J. G., Li Z., Liu Y., Liu H. L. and Fu T. D. 1997 Cytogenetics and morphology of the pentaploid hybrid between Brassica napus and Orychophragmus violaceus and its progeny. Plant Breed. 116, 251–257.

    Article  Google Scholar 

  • Zhao Z. G., Ma N. and Li Z. Y. 2007 Alteration of chromosome behavior and synchronization of parental chromosomes after successive generations in Brassica napus × Orychophragmus violaceus hybrids. Genome 50, 226–233.

    Article  PubMed  CAS  Google Scholar 

  • Zhong X. B., Hans de Jong J. and Zabel P. 1996 Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosoma Res. 4, 24–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, CY., Wan-Yan, RH. & Li, ZY. Origin of new Brassica types from a single intergeneric hybrid between B. rapa and Orychophragmus violaceus by rapid chromosome evolution and introgression. J Genet 86, 249–257 (2007). https://doi.org/10.1007/s12041-007-0032-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-007-0032-9

Keywords

Navigation