Skip to main content
Log in

Male accessory gland secretory protein polymorphism in natural populations of Drosophila nasuta nasuta and Drosophila sulfurigaster neonasuta

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Male accessory gland secretory protein polymorphism was analysed in natural populations of Drosophila nasuta nasuta and D. sulfurigaster neonasuta for the first time, using SDS-PAGE to score polymorphism of these proteins in 2788 individuals of D. n. nasuta and 2232 individuals of D. s. neonasuta from 12 different populations from southern India. A total of 25 and 18 variant protein phenotypes were identified in D. n. nasuta and D. s. neonasuta, respectively. Protein fractions of group III were more polymorphic than those from groups I and II. The results show that accessory gland secretory proteins show high levels of polymorphism, irrespective of species or habitat. Moreover, we have used the variation in the accessory gland proteins to assess the extent of divergence between the species and to infer their population structure. The study suggests that though both D. n. nasuta and D. s. neonasuta belong to the same subgroup, they differ in population structure, as far as accessory gland protein polymorphism is concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguadé M. 1999 Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila. Genetics 152, 543–551.

    PubMed  Google Scholar 

  • Aguadé M., Miyashita N. and Langley C. H. 1992 Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics 132, 755–770.

    PubMed  Google Scholar 

  • Begun D. J., Whitley P., Todd B. L., Waldrip-Dail H. M. and Clark A. G. 2000 Molecular population genetics of male accessory gland proteins in Drosophila. Genetics 56, 1879–1888.

    Google Scholar 

  • Buchanan B. A. and Johnson D. L. E. 1983 Hidden electrophoretic variation at the xanthine dehydrogenase locus in a natural population of Drosophila melanogaster. Genetics 104, 301–315.

    PubMed  CAS  Google Scholar 

  • Chen P. S. 1996 The accessory gland proteins in male Drosophila: structural, reproductive, and evolutionary aspects. Experientia 52, 503–510.

    Article  PubMed  CAS  Google Scholar 

  • Cirera S. and Aguadé M. 1997 Evolutionary history of the sex-peptide (Acp70A) gene region in Drosophila melanogaster. Genetics 147, 189–197.

    PubMed  CAS  Google Scholar 

  • Civetta A. and Singh R. S. 1998 Sex related genes, directional sexual selection and speciation. Mol. Biol. Evol. 15, 901–909.

    PubMed  CAS  Google Scholar 

  • Coulthart M. B. and Singh R. S. 1988 Differing amounts of genetic polymorphism in testes and male accessory glands of Drosophila melanogaster and Drosophila simulans. Biochem. Genet. 26, 153–164.

    Article  PubMed  CAS  Google Scholar 

  • da Cunha A. B., Burla H. and Dobzhansky T. 1950 Adaptive chromosomal polymorphism in Drosophila willistoni. Evolution 4, 212–235.

    Article  Google Scholar 

  • Dunbar B. S. 1987 Basic principles of post-translational modification of proteins and their analysis using high resolution two dimensional polyacrylamide gel electrophoresis. In Two dimensional electrophoresis and immunological techniques, pp 77–101. Plenum Press, New York.

    Google Scholar 

  • Eberhard W. G. 1996 Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Gai P. G. and Krishnamurthy N. B. 1983 Studies on the Drosophila fauna from Sampaje and Shiradi ghats, Karnataka, India. Dros. Inf. Serv. 59, 36–37.

    Google Scholar 

  • Hegde S. N., Vasudev V., Shakunthala V. and Krishna M. S. 1998 Drosophila fauna of Palani hills, Tamil Nadu, India. Dros. Inf. Serv. 81, 138–139.

    Google Scholar 

  • Holsinger and Wallace 2004. Bayesian approaches for the analysis of population structure: an example from Platanthera leucophaca (orchidaceae). Molecular Ecology 13, 887–894.

    Article  PubMed  Google Scholar 

  • Holsinger K. E., Lewis P. O. and Dey D. K. 2002 A Bayesian approach to inferring population structure from dominant markers. Mol.Ecol. 11, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  • Kimura M. 1968 Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet. Res. 11, 247–269.

    Article  PubMed  CAS  Google Scholar 

  • Kimura M. and Ohta T. 1974 On some principles governing molecular evolution. Proc. Natl. Acad. Sci. USA. 71, 2848–2852.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S., Tamura K., Jakobsen I. B. and Nei M. 2001 MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.

    Article  PubMed  CAS  Google Scholar 

  • Metz E. C. and Palumbi S. R. 1996 Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol. Biol. Evol. 13, 397–406.

    PubMed  CAS  Google Scholar 

  • Monsma S. A. and Wolfner M. F. 1988 Structure and expression of a Drosophila male accessory gland gene whose product resembles a peptide pheromone precursor. Genes Dev. 2, 1063–1073.

    Article  PubMed  CAS  Google Scholar 

  • Niklas K. J. 1997 The evolutionary biology of plants. University of Chicago Press, Chicago.

    Google Scholar 

  • Nirmala S. S. and Krishnamurthy N. B. 1974 Cytogenetic studies on Drosophila neonasuta — a member of nasuta subgroup. J. Mysore Univ. 26, 162–167.

    Google Scholar 

  • Ramesh S. R. and Shivanna N. 1999 SDS-PAGE pattern polymorphism of X-chromosomal glue proteins in natural populations of two Drosophila nasuta subgroup species. Biochem. Genet. 37, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Ravi Ram K. and Ramesh S. R. 1999 Male accessory gland secretory proteins in nasuta subgroup of Drosophila: nature and SDS-PAGE patterns. Ind. J. Exp. Biol. 37, 767–773.

    Google Scholar 

  • Ravi Ram K. and Ramesh S. R. 2001 Male accessory gland secretory proteins in a few members of Drosophila nasuta subgroup. Biochem. Genet. 39, 99–115.

    Article  Google Scholar 

  • Ravi Ram K. and Ramesh S. R. 2002. Male accessory gland secretory proteins in nasuta subgroup of Drosophila: Synthetic Activity of Acp. Zoological Science 19, 513–518.

    Article  PubMed  CAS  Google Scholar 

  • Ravi Ram K. and Ramesh S. R. 2003 Male accessory gland proteins in Drosophila: a multifaceted field. Ind. J. Exp. Biol. 41, 1372–1383.

    CAS  Google Scholar 

  • Rice W. R. 1998 Intergenomic conflict, interlocus antagonistic co-evolution, and the evolution of reproductive isolation. In Endless forms: species and speciation (ed. by D. J. Howard and S. H. Berlocher), pp. 261–270. Oxford University Press, New York.

    Google Scholar 

  • Schmid K. J., Nigro L., Aquadro C. F. and Tautz D. 1999 Large number of replacement polymorphisms in rapidly evolving genes of Drosophila: implications for genome-wide surveys of DNA polymorphism. Genetics 153, 1717–1729.

    PubMed  CAS  Google Scholar 

  • Seeburg P. H., Colby W. W., Capon D. J., Goeddel D. V. and Levinson A. D. 1984 Biological properties of human C-Ha-ras 1 genes mutated at codon 12. Nature 312, 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Shivanna N. and Ramesh S. R. 1995 Quantitative and qualitative analysis of accessory gland secretory proteins in a few species of Drosophila immigrans group. Ind. J. Exp. Biol. 33, 668–672.

    CAS  Google Scholar 

  • Shyamala B. V. and Ranganath H. A. 1988 Inversion polymorphism in natural populations of Drosophila nasuta nasuta. Proc. Ind. Acad. Sci. 97, 471–477.

    Article  Google Scholar 

  • Shyamala B. V., Rao P. M. and Ranganath H. A. 1989 Inversion polymorphism and linkage disequilibrium in Drosophila sulfurigaster neonasuta. J. Heredity 80, 488–490.

    CAS  Google Scholar 

  • Stumm-Zollinger E. and Chen P. S. 1985 Protein metabolism of Drosophila melanogaster male accessory glands. 1. Characterization of secretory proteins. Insect. Biochem. 15, 375–381.

    Article  CAS  Google Scholar 

  • Sutton K. A. and Wilkinson M. F. 1997 Rapid evolution of a home-odomain: evidence for positive selection. J. Mol. Evol. 45, 579–588.

    Article  PubMed  CAS  Google Scholar 

  • Swanson W. J. and Vacquier V. D. 1995 Extraordinary divergence and positive Darwinian selection in a fusagenic protein coating the acrosomal process of abalonespermatozoa. Proc. Natl. Acad. Sci. USA 92, 4957–4961.

    Article  PubMed  CAS  Google Scholar 

  • Swanson W. J. and Vacquier V. D. 2002 The rapid evolution of reproductive proteins. Nature Rev. Genet. 3, 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Swanson W. J., Clark A. G., Waldrip-Dail H. M., Wolfner M. F. and Aquadro C. F. 2001 Evolutionary EST analysis identifies rapidly evolving male reproductive tract proteins in Drosophila. Proc. Natl. Acad. Sci. USA. 98, 7375–7379.

    Article  PubMed  CAS  Google Scholar 

  • Torgerson D. G., Kulathinal R. J. and Singh R. S. 2002 Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes. Mol. Biol. Evol. 19, 1973–1980.

    PubMed  CAS  Google Scholar 

  • Tsaur S.-H., Ting C.-T. and Wu C.-I. 1998 Positive selection driving the evolution of a gene of male reproduction, Acp26Aa of Drosophila. Mol. Biol. Evol. 15, 1040–1046.

    PubMed  CAS  Google Scholar 

  • Tsaur S.-H., Ting C.-T. and Wu C.-I. 2001 Sex in Drosophila mauritiana: a very high level of amino acid polymorphism in a male reproductive protein gene, Acp26Aa. Mol. Biol. Evol. 18, 22–26.

    PubMed  CAS  Google Scholar 

  • Wagstaff B. J., and Begun D. J. 2005 Comparative genomics of accessory gland protein genes in Drosophila melanogaster and D. pseudoobscura. Mol. Biol. Evol. 22, 818–832.

    Article  PubMed  CAS  Google Scholar 

  • Whalen M. and Wilson G. T. 1986 Variation and genomic localization of genes encoding Drosophila melanogaster accessory gland proteins separated by SDS-PAGE. Genetics 114, 77–92.

    PubMed  CAS  Google Scholar 

  • Wilson F. D., Wheeler M. R., Harget M. and Kambysellis M. 1969 Cytogenetic relations in the Drosophila nasuta subgroup of the immigrans group of species. Univ. Texas Publ. 6918, 207–253.

    Google Scholar 

  • Wyckoff G. J., Wang W and Wu C.-I. 2000 Rapid evolution of male reproductive genes in the descent of man. Nature 503, 304–309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi Ram, K., Ramesh, S.R. Male accessory gland secretory protein polymorphism in natural populations of Drosophila nasuta nasuta and Drosophila sulfurigaster neonasuta . J Genet 86, 217–224 (2007). https://doi.org/10.1007/s12041-007-0029-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-007-0029-4

Keywords

Navigation