Skip to main content

Advertisement

Log in

How well does MPAS simulate the West African Monsoon?

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The West African Monsoon (WAM) system plays a crucial role in the West African climate system because it transports moisture from the Atlantic Ocean into the subcontinent in summer. This study evaluates the capability of the Model for Prediction Across Scales-Atmosphere (MPAS-A) to simulate the characteristic reproduce the WAM system and the associated rainfall-producing features. The MPAS model was used to perform a 30-year global climate simulation (1981–2010) at a regular grid (uniform resolution of 60 km). The simulation was initialized with the Climate Forecast System Reanalysis (CSFR) dataset. The results showed that MPAS simulate well the rainfall pattern over West Africa and reproduces the different phases of the monsoon dynamics system (i.e., the northward progression, the peak period, and the southward retreat). The model also reasonably replicates the pattern of the zonal components of wind and the vertical velocity. However, MPAS underestimates the orographic rainfall over the Guinea Coast, Jos Plateau, and Mount Cameroon. It also underestimates the vertical velocity and zonal wind magnitudes over the region. In addition, the model features a weaker temperature gradient than in the reanalysis. Understanding and correcting the sources of these model biases will enhance the suitability of MPAS for weather and seasonal forecasts over West Africa.

Research highlights

In this study, we investigated the ability of the Model for Prediction Across Scales (MPAS) to simulate the West African monsoon rainfall, the associated atmospheric features controlling the variability of the seasonal and annual cycle, and the thermal wind conditions. First, the model is initialized using the CSFR reanalysis. Then, we run the model simulation for 30 years, from 1981 to 2010, using a regular grid (uniform resolution of 60 km). We showed that the model realistically simulated the spatial pattern of rainfall over West Africa. However, it has some problems when it comes to capturing the monsoon features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Abatan A A 2011 West African extreme daily precipitation in observations and stretched-grid simulations by CAM-EULAG; Iowa State University.

  • Abiodun B J, Pal J S, Afiesimama E A, Gutowski W J and Adedoyin A 2010 Modelling the impacts of deforestation on monsoon rainfall in West Africa; In: IOP Conference Series: Earth and Environmental Science; IOP Publishing 13(1) 012008.

  • Abiodun B J, Gutowski W J, Abatan A A and Prusa J M 2011 CAM-EULAG: A non-hydrostatic atmospheric climate model with grid stretching; Acta Geophys. 59(6) 1158–1167.

    Article  ADS  Google Scholar 

  • Afiesimama E A, Pal J S, Abiodun B J, Gutowski W J and Adedoyin A 2006 Simulation of West African monsoon using the RegCM3. Part I: Model validation and interannual variability; Theor. Appl. Climatol. 86(1) 23–37.

    Article  ADS  Google Scholar 

  • Ajibola F O, Zhou B, Tchalim Gnitou G and Onyejuruwa A 2020 Evaluation of the performance of CMIP6 HighResMIP on West African precipitation; J. Atmos. 11(10) 1053.

    ADS  Google Scholar 

  • Akinsanola A A, Ogunjobi K O, Ajayi V O, Adefisan E A, Omotosho J A and Sanogo S 2017 Comparison of five gridded precipitation products at climatological scales over West Africa; Meteorol. Atmos. Phys. 129(6) 669–689.

    Article  ADS  Google Scholar 

  • Akinsanola A A, Ajayi V O, Adejare A T, Adeyeri O E, Gbode I E, Ogunjobi K O and Abolude A T 2018 Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models; Theor. Appl. Climatol. 132(1) 437–450.

    Article  ADS  Google Scholar 

  • Browne N A and Sylla M B 2012 Regional climate model sensitivity to domain size for the simulation of the West African summer monsoon rainfall; Int. J. Geophys. 2012 625831.

    Article  Google Scholar 

  • Broxton P D, Zeng X, Sulla-Menashe D and Troch P A 2014 A global land cover climatology using MODIS data; J. Appl. Meteorol. Climatol. 53(6) 1593–1605.

    Article  ADS  Google Scholar 

  • Caniaux G, Giordani H, Redelsperger J L, Guichard F, Key E and Wade M 2011 Coupling between the Atlantic cold tongue and the West African monsoon in boreal spring and summer; J. Geophys. Res. Oceans 116(C4) C04003, https://doi.org/10.1029/2010JC006570.

  • Chagnaud G, Gallée H, Lebel T, Panthou G and Vischel T 2020 A boundary forcing sensitivity analysis of the West African monsoon simulated by the modele atmospherique regional; J. Atmos. 11(2) 191.

    ADS  Google Scholar 

  • Chen F, Mitchell K, Schaake J, Xue Y, Pan H L, Koren V, Duan Q Y, Ek M and Betts A 1996 Modeling of land surface evaporation by four schemes and comparison with FIFE observations; J. Geophys. Res. Atmos. 101(D3) 7251–7268.

    Article  ADS  Google Scholar 

  • Cook K H 1999 Generation of the African easterly jet and its role in determining West African precipitation; J. Clim. 12(5) 1165–1184.

    Article  ADS  Google Scholar 

  • Cook K H and Vizy E K 2006 Coupled model simulations of the West African monsoon system: Twentieth- and twenty-first-century simulations; J. Clim. 19(15) 3681–3703.

    Article  ADS  Google Scholar 

  • Danielson J J and Gesch D B 2011 Global multi-resolution terrain elevation data 2010 (GMTED2010); Washington, DC, USA: US Department of the Interior, US Geological Survey, 26p.

  • Davis N and Birner T 2016 Climate model biases in the width of the tropical belt; J. Clim. 29(5) 1935–1954.

    Article  ADS  Google Scholar 

  • Diallo I, Sylla M B, Giorgi F, Gaye A T and Camara M 2012 Multimodel GCM-RCM ensemble-based projections of temperature and precipitation over West Africa for the early 21st century; Int. J. Geophys. 2012 972896.

  • Donkin P T and Abiodun B J 2023 Capability and sensitivity of MPAS-A in simulating tropical cyclones over the South-West Indian Ocean; MESE 9(1) 527–542.

    Google Scholar 

  • Fox‐Rabinovitz M, Côté J, Dugas B, Déqué M and McGregor J L 2006 Variable resolution general circulation models: Stretched‐grid model intercomparison project (SGMIP); J. Geophys. Res. Atmos. 111(D16) D16104, https://doi.org/10.1029/2005JD006520.

  • Fox-Rabinovitz M, Cote J, Dugas B, Deque M, McGregor J L and Belochitski A 2008 Stretched-grid Model Intercomparison Project: Decadal regional climate simulations with enhanced variable and uniform-resolution GCMs; Meteorol. Atmos. Phys. 100(1) 159–178.

    Article  ADS  Google Scholar 

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S and Michaelsen J 2015 The climate hazards infrared precipitation with stations a new environmental record for monitoring extremes; Sci. Data 2(1) 1–21.

    Article  Google Scholar 

  • Gbode I E, Dudhia J, Ogunjobi K O and Ajayi V O 2019 Sensitivity of different physics schemes in the WRF model during a West African monsoon regime; Theor. Appl. Climatol. 136 733–751.

    Article  ADS  Google Scholar 

  • Grist J P and Nicholson S E 2001 A study of the dynamic factors influencing the rainfall variability in the West African Sahel; J. Clim. 14(7) 1337–1359.

    Article  ADS  Google Scholar 

  • Hagos S M and Cook K H 2007 Dynamics of the West African monsoon jump; J. Clim. 20(21) 5264–5284.

    Article  ADS  Google Scholar 

  • Harris L M, Lin S J and Tu C 2016 High-resolution climate simulations using GFDL HiRAM with a stretched global grid; J. Clim. 29(11) 4293–4314.

    Article  ADS  Google Scholar 

  • Harris I, Osborn T J, Jones P and Lister D 2020 Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset; Sci. Data 7(1) 1–18.

    Article  Google Scholar 

  • Heinzeller D, Duda M G and Kunstmann H 2016 Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3. 1: An extreme scaling experiment; Geosci. Model Dev. 9(1) 77–110.

    Article  ADS  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J and Simmons A 2020 The ERA5 global reanalysis; Quart. J. Roy. Meteorol. Soc. 146(730) 1999–2049.

    Article  ADS  Google Scholar 

  • Hourdin F, Musat I, Guichard F S, Ruti P M, Favot F, Filiberti M A and Gallée H 2010 AMMA-model intercomparison project; Bull. Am. Meteorol. 91(1) 95–104.

    Article  ADS  Google Scholar 

  • Janicot S 1997 Impact of warm ENSO events on atmospheric circulation and convection over the tropical Atlantic and West Africa; Ann. Geophys. 15(4) 471–475.

    Article  ADS  Google Scholar 

  • Jones P W 1999 First- and second-order conservative remapping schemes for grids in spherical coordinates; MWR 127(9) 2204–2210.

    Article  ADS  Google Scholar 

  • Ju L, Ringler T and Gunzburger M 2011 Voronoi tessellations and their application to climate and global modeling; In: Numerical techniques for global atmospheric models, Columbia, USA, pp. 313–342.

  • Klemp J B and Skamarock W C 2021 Adapting the MPAS dynamical core for applications extending into the thermosphere; J. Adv. Model. Earth Syst. 13(9) e2021MS002499.

    Article  ADS  Google Scholar 

  • Klutse N A B, Sylla M B, Diallo I, Sarr A, Dosio A, Diedhiou A and Büchner M 2016 Daily characteristics of West African summer monsoon precipitation in CORDEX simulations; Theor. Appl. Climatol. 123(1) 369–386.

    Article  ADS  Google Scholar 

  • Klutse N A B, Quagraine K A, Nkrumah F, Quagraine K T, Berkoh-Oforiwaa R, Dzrobi J F and Sylla M B 2021 The climatic analysis of summer monsoon extreme precipitation events over West Africa in CMIP6 simulations; Earth Syst. Environ. 5(1) 25–41.

    Article  ADS  Google Scholar 

  • Kramer M, Heinzeller D, Hartmann H, van den Berg W and Steeneveld G J 2020 Assessment of MPAS variable resolution simulations in the grey-zone of convection against WRF model results and observations: An MPAS feasibility study of three extreme weather events in Europe; Clim. Dyn. 55(1–2) 253–276.

    Article  Google Scholar 

  • Krishnamurthy V and Ajayamohan R S 2010 Composite structure of monsoon low pressure systems and its relation to Indian rainfall; J. Clim. 23(16) 4285–4305.

    Article  ADS  Google Scholar 

  • Landu K, Leung L R, Hagos S, Vinoj V, Rauscher S A, Ringler T and Taylor M 2014 The dependence of ITCZ structure on model resolution and dynamical core in aquaplanet simulations; J. Clim. 27(6) 2375–2385.

    Article  ADS  Google Scholar 

  • Lui Y S, Tse L K S, Tam C Y, Lau K H and Chen J 2021 Performance of MPAS-A and WRF in predicting and simulating western North Pacific tropical cyclone tracks and intensities; Theor. Appl. Climatol. 143(1–2) 505–520.

    Article  ADS  Google Scholar 

  • Martini M N, Gustafson Jr W I, O’Brien T A and Ma P L 2015 Evaluation of tropical channel refinement using MPAS: A aqua planet simulations; J. Adv. Model. Earth Syst. 7(3) 1351–1367.

    Article  ADS  Google Scholar 

  • Matte D, Laprise R, Thériault J M and Lucas-Picher P 2017 Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions; Clim. Dyn. 49(1) 563–574.

    Article  Google Scholar 

  • Michaelis A C, Lackmann G M and Robinson W A 2019 Evaluation of a unique approach to high-resolution climate modeling using the Model for Prediction Across Scales–Atmosphere (MPAS-A) version 5.1; Geosci. Model Dev. 12(8) 3725–3743.

    Article  ADS  Google Scholar 

  • Niang C, Mohino E, Gaye A T and Omotosho J B 2017 Impact of the Madden Julian Oscillation on the summer West African monsoon in AMIP simulations; Clim. Dyn. 48 2297–2314.

    Article  Google Scholar 

  • Nicholson S E 2009 A revised picture of the structure of the 'monsoon' and land ITCZ over West Africa; Clim. Dyn. 32 1155–1171.

    Article  Google Scholar 

  • Nicholson S E 2013 The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability; Int. Sch. Res. Not. 2013 453521.

    Google Scholar 

  • Nicholson S E and Grist J P 2003 The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa; J. Clim. 6(7) 1013–1030.

    Article  ADS  Google Scholar 

  • Nicholson S E and Webster P J 2007 A physical basis for the interannual variability of rainfall in the Sahel; Quart. J. Roy. Meteorol. Soc. 133(629) 2065–2084.

    Article  ADS  Google Scholar 

  • Odoulami R C, Abiodun B J and Ajayi A E 2019 Modelling the potential impacts of afforestation on extreme precipitation over West Africa; Clim. Dyn. 52(3) 2185–2198.

    Article  Google Scholar 

  • Oguntunde P G, Abiodun B J and Lischeid G 2011 Rainfall trends in Nigeria, 1901–2000; J. Hydrol. 411(3–4) 207–218.

    Article  ADS  Google Scholar 

  • Omotosho J B and Abiodun B J 2007 A numerical study of moisture build-up and rainfall over West Africa; Meteorol. Appl. 14(3) 209–225.

    Article  ADS  Google Scholar 

  • Pal J S, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X and Steiner A L 2007 Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET; Bull. Am. Meteorol. Soc. 88(9) 1395–1410.

    Article  ADS  Google Scholar 

  • Pilon R, Zhang C and Dudhia J 2016 Roles of deep and shallow convection and microphysics in the MJO simulated by the model for prediction across scales; J. Geophys. Res. Atmos. 121(18) 10,575–10,600.

    Article  Google Scholar 

  • Raj J, Bangalath H K and Stenchikov G 2019 West African Monsoon: Current state and future projections in a high-resolution AGCM; Clim. Dyn. 52(11) 6441–6461.

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y T, Chuang H Y, Iredell M, Ek M, Meng J, Yang R, Mendez M P, Van Den Dool H, Zhang Q, Wang W, Chen M and Becker E 2014 The NCEP climate forecast system version 2; J. Clim. 27(6) 2185–2208.

    Article  ADS  Google Scholar 

  • Sivakumar M V, Collins C, Jay A and Hansen J 2014 Regional priorities for strengthening climate services for farmers in Africa and South Asia; CCAFS Working Paper.

  • Smith I, Moise A, Katzfey J, Nguyen K and Colman R 2013 Regional-scale rainfall projections: Simulations for the New Guinea region using the CCAM model; J. Geophys. Res. Atmos. 118(3) 1271–1280.

    Article  ADS  Google Scholar 

  • Sultan B and Janicot S 2003 The West African monsoon dynamics. Part II: The ‘preonset’ and ‘onset’ of the summer monsoon; J. Clim. 16(21) 3407–3427.

    Article  ADS  Google Scholar 

  • Sylla M B, Gaye A T, Pal J S, Jenkins G S and Bi X Q 2009 High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions; Theor. Appl. Climatol. 98(3) 293–314.

    Article  ADS  Google Scholar 

  • Sylla M B, Coppola E, Mariotti L, Giorgi F, Ruti P M, Dell’Aquila A and Bi X 2010 Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis; Clim. Dyn. 35 231–247.

  • Sylla M B, Gaye A T and Jenkins G S 2012 On the fine-scale topography regulating changes in atmospheric hydrological cycle and extreme rainfall over West Africa in a regional climate model projection; Int. J. Geophys. 2012 981649, https://doi.org/10.1155/2012/981649.

  • Sylla M B, Giorgi F, Coppola E and Mariotti L 2013 Uncertainties in daily rainfall over Africa: Assessment of gridded observation products and evaluation of a regional climate model simulation; Int. J. Climatol. 33(7) 1805–1817.

    Article  Google Scholar 

  • Tamoffo A T, Dosio A, Amekudzi L K and Weber T 2022 Process-oriented evaluation of the West African Monsoon system in CORDEX-CORE regional climate models; Clim. Dyn. 60(7–8) 1–24, https://doi.org/10.1007/s00382-022-06502-y.

  • Thorncroft C D and Blackburn M 1999 Maintenance of the African easterly jet; Quart. J. Roy. Meteorol. Soc. 125(555) 763–786.

    ADS  Google Scholar 

  • Thuburn J, Ringler T D, Skamarock W C and Klemp J B 2009 Numerical representation of geostrophic modes on arbitrarily structured C-grids; J. Comput. Phys. 228(22) 8321–8335.

    Article  ADS  MathSciNet  Google Scholar 

  • Vizy E K and Cook K H 2002 Development and application of a mesoscale climate model for the tropics: Influence of sea surface temperature anomalies on the West African monsoon; J. Geophys. Res. Atmos. 107(D3) ACL-2.

    Article  Google Scholar 

  • Xue Y, De Sales F, Lau W M, Boone A, Feng J, Dirmeyer P and Wu M L C 2010 Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment; Clim. Dyn. 35(1) 3–27.

    Article  Google Scholar 

  • Zhang Q, Berntell E, Li Q and Ljungqvist F C 2021 Understanding the variability of the rainfall dipole in West Africa using the EC-Earth last millennium simulation; Clim. Dyn. 57(1) 93–107.

    Article  Google Scholar 

Download references

Acknowledgements

My sincere appreciation goes to the Federal Ministry of Education and Research (BMBF) and the West African Science Centre on Climate Change and Adapted Land Use (WASCAL) for providing the scholarship and financial support for this programme.

Author information

Authors and Affiliations

Authors

Contributions

Laouali I Tanimoune carried out the experiment, analysed the data, coordinated this research and drafted the first manuscript. Babatunde J Abiodun supervised and assisted in drafting the manuscript. Nimon Pouwereou assisted in the data analysis. Harald Kunstmann supervised one part of the research and edited the paper. Gerhard Smiatek contributed to the modelling aspect of the paper. Vincent O Ajayi contributed to correcting the grammatical aspect of the paper. Ibrah S Sanda contributed to the model's setup.

Corresponding author

Correspondence to Laouali I Tanimoune.

Additional information

Communicated by Parthasarathi Mukhopadhyay

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanimoune, L.I., Abiodun, B.J., Pouwereou, N. et al. How well does MPAS simulate the West African Monsoon?. J Earth Syst Sci 133, 56 (2024). https://doi.org/10.1007/s12040-023-02245-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02245-4

Keywords

Navigation