Skip to main content
Log in

Understanding the physical state and tectonics of Eastern Himalaya using coda wave attenuation

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Several strong to great earthquakes occurred in northeast India, indicating that the region is seismically very active. For a better understanding of the complex nature of tectonics in the Eastern Himalaya, a frequency-dependent attenuation relation based on coda waves is developed. The backscattering model of Aki and Chouet (J. Geophys. Res. 80: 3322–3342, 1975) is used to study the dependency of coda-Q on lapse time windows and frequency. Analysis of waveforms from 104 local earthquakes recorded by a five-station local seismological network provides frequency-dependent coda-Q relations: Qc = (61±8)f(1.23±0.03) (30s lapse time), Qc = (83±9)f(1.17±0.03) (40s lapse time) and Qc = (104±8)f(1.15±0.04) (50s lapse time). These estimated relationships clearly demonstrate Qc's depth dependency, as longer lapse time windows would carry deeper depth information. Also, the increase in the value of Q0 (Qc at 1 Hz) with lapse time depicts heterogeneity decrease with depth. The observed quality factor is highly variable with the frequency and lapse time. The higher the value of ‘n,' the more seismically active the region. The observed Qc relation is found equivalent to other similar seismically active regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abercrombie R E 1997 Near-surface attenuation and site effects from comparison of surface and deep boreholes recordings; Bull. Seismol. Soc. Am. 87 731–744.

    Article  Google Scholar 

  • Aki K 1969 Analysis of seismic coda of local earthquakes as scattered waves; J. Geophys. Res. 74 615–631.

    Article  Google Scholar 

  • Aki K and Chouet B 1975 Origin of coda waves: Source, attenuation and scattering effects; J. Geophys. Res. 80 3322–3342.

    Article  Google Scholar 

  • Ambeh W B and Lynch L L 1993 Coda-Q in the eastern Caribbean, West Indies; Geophys. J. Int. 112 507–516.

    Article  Google Scholar 

  • Anderson J G, Lee Y, Zeng Y and Day S 1996 Control of strong motion by the upper 30 meters; Bull. Seismol. Soc. Am. 86 1749–1759.

    Article  Google Scholar 

  • Barros L V, Assumpção M, Quintero R and Ferreira V M 2011 Coda wave attenuation in the Parecis Basin Amazon craton, Brazil: Sensitivity to basement depth; J. Seismol. 15 391–409.

    Article  Google Scholar 

  • Batzle M, Hofmann R, Prasad M, Kumar G, Duranti and Han D H 2005 November seismic attenuation: Observations and mechanisms; In: 2005 SEG Annual Meeting, OnePetro.

  • Bora N and Biswas R 2018 P- and S-wave attenuation in the Kopili region of northeastern India; Ann. Geophys. 61(6) SE668.

    Google Scholar 

  • Bora D K, Hazarika D, Borah K, Rai S S and Baruah S 2014 Crustal shear-wave velocity structure beneath northeast India from teleseismic receiver function analysis; J. Asian Earth Sci. 90 1–14.

    Article  Google Scholar 

  • Chopra A K, Kumar D and Rastogi B K 2010 Estimation of strong ground motions for 2001 Bhuj (Mw 7.6), India Earthquake; Pure Appl. Geophys. 167 887–906.

    Article  Google Scholar 

  • Choudhury B K 2022 Attenuation of regional seismic Lg waves in the Eastern Himalayan Mobile Belt (EHMB) and the Mishmi Block of Arunachal Pradesh in the North-Eastern Region (NER) of India; Phys. Chem. Earth, Parts a/b/c 126 103–129.

    Article  Google Scholar 

  • Curray J R 1989 The Sunda Arc: A model for oblique plate convergence; J. Sea Res. 24(2–3) 131–140.

    Google Scholar 

  • Dainty A M, Toksöz M N, Anderson K R, Pines P J, Nakamura Y and Latham G 1974 Seismic scattering and shallow structure of the moon in oceanus procellarum; The Moon 9 11–29.

    Article  Google Scholar 

  • Doglioni C and Flores G 1997 An introduction to Italian geology; Universita Degli Studi Basilicata, Lamisco.

    Google Scholar 

  • Durek J J and Ekström G 1996 A radial model of anelasticity consistent with long-period surface-wave attenuation; Bull. Seismol. Soc. Am. 86(1A) 144–158.

    Article  Google Scholar 

  • Gansser A 1964 Geology of the Himalayas; Interscience Publishers, London, 286p.

    Google Scholar 

  • Gao L S, Lee L C, Biswas N N and Aki K 1983a Comparison of single and multiple scattering effects on coda waves; Bull. Seismol. Soc. Am. 73 377–389.

    Google Scholar 

  • Gao L S, Biswas N N, Lee L C and Aki K 1983b Effects of multiple scattering on coda waves in three-dimensional medium; Pure Appl. Geophys. 121 3–15.

    Article  Google Scholar 

  • Giampiccolo E, Gresta S and Rascona F 2004 Intrinsic and scattering attenuation from observed seismic codas in southeastern Sicily (Italy); Phys. Earth Planet. Int. 145(1–4) 55–66.

    Article  Google Scholar 

  • Gupta A K, Sutar A K, Chopra S, Kumar S and Rastogi B K 2012 Attenuation characteristics of coda waves in Mainland Gujarat (India); Tectonophys. 530 264–271.

    Article  Google Scholar 

  • Gupta S C, Kumar A, Shukla A K, Suresh G and Baidya P R 2006 Coda Q in the Kachchh Basin, Western India using aftershocks of the Bhuj earthquake of January 26, 2001; Pure Appl. Geophys. 163 1583–1595.

    Article  Google Scholar 

  • Gupta S C, Teotia S S, Rai S S and Gautam N 1998 Coda-Q estimates in the Koyna region, India; Pure Appl. Geophys. 153 713–731.

    Article  Google Scholar 

  • Gupta S C and Kumar A 2002 Seismic wave attenuation characteristics of three Indian regions: A comparative study; Curr. Sci. 82(4) 407–413.

    Google Scholar 

  • Gupta S C, Singh V N and Kumar A 1995 Attenuation of coda waves in the Garhwal Himalaya, India; Phys. Earth Planet. Int. 87 247–253.

    Article  Google Scholar 

  • GSI 2000 Seismotectonic Atlas of India and its Environs; In: Geological Survey of India, Special Publication (eds) Narula P L, Acharya S K and Banerjee P, 86p.

  • GSI 2006 Geology and mineral resources of the states of India; Calcutta, Director General, Geological Survey of India.

  • Havskov J and Ottemoller L 2005 SEISAN (version 8.1): The earthquake analysis software for Windows, Solaris, Linux, and Mac OSX Version 8.0, 254p.

  • Havskov J, Malone S, McClurg D and Crosson R 1989 Coda Q for the state of Washington; Bull. Seismol. Soc. Am. 79(4) 1024–1038.

    Google Scholar 

  • Hazarika D, Baruah S and Gogoi N K 2009 Attenuation of coda waves in the Northeastern Region of India; J. Seismol. 13(1) 141–160.

    Article  Google Scholar 

  • Hiramatsu Y, Hayashi N, Furumoto M and Katao H 2000 Temporal changes in coda-Q−1 and b value due to the static stress change associated with the 1995 Hyogo‐ken Nanbu earthquake; J. Geophys. Res.: Solid Earth 105(B3) 6141–6151.

    Article  Google Scholar 

  • Hoshiba M 1993 Separation of scattering attenuation and intrinsic absorption in Japan using the multiple lapse time window analysis of full seismogram envelope; J. Geophys. Res.: Solid Earth 98(B9) 15,809–15,824.

  • Jin A and Aki K 1988 Spatial and temporal correlation between Coda-Q and seismicity in China; Bull. Seismol. Soc. Am. 78 741–769.

    Article  Google Scholar 

  • Jin A and Aki K 2005 High-resolution maps of Coda-Q in Japan and their interpretation by the brittle–ductile interaction hypothesis; Earth Planets Space 57 403–409.

    Article  Google Scholar 

  • Kingdon-Ward F 1953 The Assam earthquake of 1950; Geogr. J. 119(2) 169–182.

    Article  Google Scholar 

  • Klein F W 1978 Hypocenter location program HYPOINVERSE: Part I. Users guide to versions 1, 2, 3, and 4. Part II. Source listings and notes (No. 78–694); US Geological Survey.

  • Knopoff L 1964 Q. Rev. Geophys. 2 625–660.

  • Kopnichev Y F 1975 A model of generation of the tail of the seismogram; Doklady Akad. Nauk SSSR (English Trans.) 222 333–335.

    Google Scholar 

  • Kopnichev Y F 1977a Models for the formation of the coda of the longitudinal wave; Dokl. Akad. Nauk. USSR 222 333–335.

    Google Scholar 

  • Kopnichev Y F 1977b The role of multiple scattering in the formation of seismogram’s tail, Izvestiya; Phys. Solid Earth 13 394–398.

    Google Scholar 

  • Kumar A, Kumar R, Ghangas V and Sharma B 2015 MATLAB codes (Coda-Q) for estimation of attenuation characteristics of coda waves; Int. J. Adv. Res. 3 1078–1083.

    Google Scholar 

  • Kumar N, Parve I A and Virk H S 2005 Estimation of coda wave attenuation for NW Himalayan region using local earthquakes; Phys. Earth Planet. Int. 151(3–4) 243–258.

    Article  Google Scholar 

  • Kumar R, Gupta S C and Kumar A 2014 Attenuation characteristics of seismic body waves for the crust of Lower Siang region of Arunachal Himalaya; Int. J. Adv. Res. Publ. 2(6) 742–755.

    Google Scholar 

  • Lindsay J M, Trumbull R B and Siebel W 2005 Geochemistry and petrogenesis of late Pleistocene to Recent volcanism in southern Dominica, Lesser Antilles; J. Volcanol. Geotherm. Res. 148 253–294.

    Article  Google Scholar 

  • Ma’hood M and Hamzehloo H 2009 Estimation of coda wave attenuation in East Central Iran; J. Seismol. 13 125–139.

  • Mahanta B N, Sekhose K, Goswami T K et al. 2021 Depositional setup of the faunal coal balls from Bichom Formation of Lower Gondwana Group of Arunachal Himalaya: Insights from EPMA and Raman Spectroscopy; J. Sediment. Environ. 6 159–168.

    Article  Google Scholar 

  • Mak S, Chan L S, Chandler A M and Koo R C H 2004 Coda Q estimates in the Hong Kong region; J. Asian Earth Sci. 24(1) 127–136.

    Article  Google Scholar 

  • Mandal P, Jainendra Joshi S, Kumar S, Bhunia R and Rastogi B K 2004 Low Coda Qc in the epicentral region of the 2001 Bhuj Earthquake of Mw 7.7; Pure Appl. Geophys. 161 1635–1654.

    Article  Google Scholar 

  • Mayeda K, Hofstetter A, O’Boyle J L and Walter W R 2003 Stable and transportable regional magnitudes based on coda-derived moment rate spectra; Bull. Seismol. Soc. Am. 93 224–239.

    Article  Google Scholar 

  • Mukhopadhyay S, Sharma J, Del-Pezzo E and Kumar N 2010 Study of attenuation mechanism for Garwhal–Kumaun Himalayas from analysis of coda of local earthquakes; Phys. Earth Planet. Int. 180(1–2) 7–15.

    Article  Google Scholar 

  • Mukhopadhyay S and Tyagi C 2007 Lapse time and frequency-dependent attenuation characteristics of coda waves in the Northwestern Himalayas; J. Seismol. 11 149–158.

    Article  Google Scholar 

  • Naresh K, Imtiyaz A P and Virk H K 2005 Estimation of coda wave attenuation for NW Himalayan region using local earthquake; Phys. Earth Planet. Int. 151(3–4) 243–258.

    Google Scholar 

  • Narula P L, Shanker R and Chopra S 2000 Rupture mechanism of Chamoli earthquake on 29 March 1999 and its implication for seismotectonic of Garhwal Himalaya; J. Geol. Soc. India 55 493–503.

    Google Scholar 

  • Oldham R D 1899 Report of the great earthquake of 12th June, 1897; Office of the Geological Survey.

  • Padhy S, Subhadra N and Kayal J R 2011 Frequency-dependent attenuation of body and coda waves in the Andaman Sea basin; Bull. Seismol. Soc. Am. 101 109–125.

    Article  Google Scholar 

  • Paul A, Gupta S C and Pant C C 2003 Coda Q estimates for Kumaun Himalaya; J. Earth Syst. Sci. 112 569–576.

    Article  Google Scholar 

  • Pieri M and Mattavelli L 1986 Geological framework of Italian petroleum resources; Am. Assoc. Petrol. Geol. Bull. 70 103–130.

    Google Scholar 

  • Polatidis A, Kiratzi A, Hatzidimitriou P and Margaris B 2003 Attenuation of shear-waves in the back-arc region of the Hellenic arc for frequencies from 0.6 to 16 Hz; Tectonophys. 367(1–2) 29–40.

  • Pulli J J 1984 Attenuation of coda waves in New England; Bull. Seismol. Soc. Am. 74 1149–1166.

    Google Scholar 

  • Rautian T G and Khalturin V I 1978 The use of the coda for the determination of the earthquake source spectrum; Bull. Seismol. Soc. Am. 68 923–948.

    Article  Google Scholar 

  • Rovelli A 1982 On the frequency dependence of Q in Friuli from short period digital records; Bull. Seismol. Soc. Am. 72 2369–2372.

    Article  Google Scholar 

  • Sato H 1977 Energy propagation including scattering effects single isotropic scattering approximation; J. Phys. Earth 25(1) 27–41.

    Article  Google Scholar 

  • Sato H, Fehler M C and Maeda T 2012 Seismic wave propagation and scattering in the heterogeneous earth; Springer Science & Business Media.

  • Shapiro S A and Kneib G 1993 Seismic attenuation by scattering: Theory and numerical results; Geophys. J. Int. 114(2) 373–391.

    Article  Google Scholar 

  • Sharma B, Gupta A K, Devi D K, Kumar D, Teotia S S and Rastogi B K 2008 Attenuation of high-frequency seismic waves in Kachchh Region, Gujarat, India; Bull. Seismol. Soc. Am. 98(5) 2325–2340.

    Article  Google Scholar 

  • Sherbaum F and Kisslinger C 1985 Coda-Q in the Adak seismic zone; Bull. Seismol. Soc. Am. 75 615–620.

    Article  Google Scholar 

  • Singh I B 1996 Geological evolution of Ganga Plain – An overview; J. Palaeontol. Soc. India 41 99–137.

    Google Scholar 

  • Singh S 1993 Geology and tectonics of the Eastern Syntaxial Bend, Arunachal Himalaya; J. Him. Geol. 4 149–163.

    Google Scholar 

  • Thakur V C and Jain A K 1975 Some observations on deformation, metamorphism and tectonic significance of the rocks of some parts of the Mishmi Hills, Lohit District (NEFA) Arunachal Pradesh; J. Him. Geol. 5 339–364.

    Google Scholar 

  • Woodgold C 1994 Coda-Q in Charlevoix, Quebec, Region. Lapse time dependence and spatial and temporal comparisons; Bull Seismol. Soc. Am. 84 1123–1131.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to IIT Roorkee and Prof. H R Wason for providing the data. Authors acknowledge the contribution of the Generic Mapping Tool (GMT). They are thankful to editors Prof. Somnath Dasgupta and Prof. Anand Joshi and also two anonymous reviewers for providing constructive comments to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Rohtash Kumar: Code and manuscript writing; Amritansh Rai: Manuscript revision and data analysis; Prashant Kumar Singh, S P Singh and Vinay Kumar: Data analysis; Raghav Singh and S P Maurya: Manuscript compilation; S C Gupta and Arjun Kumar and G P Singh: Manuscript review and overall supervision.

Corresponding author

Correspondence to Amritansh Rai.

Additional information

Communicated by Somnath Dasgupta

Corresponding editor: Somnath Dasgupta

Rohtash Kumar: deceased on 3rd May, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Rai, A., Singh, R. et al. Understanding the physical state and tectonics of Eastern Himalaya using coda wave attenuation. J Earth Syst Sci 132, 186 (2023). https://doi.org/10.1007/s12040-023-02197-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02197-9

Keywords

Navigation