Skip to main content

Advertisement

Log in

Geochemistry and petrogenesis of Neoarchaean Granitoids from the southwestern Bundelkhand Craton: Implications on Archaean geodynamic evolution

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Bundelkhand Archaean–Proterozoic Granitoid Complex comprises of an amalgamation of older, deformed Palaeoarchaean Tonalite Trondjhemite Granodiorite (TTG) surrounded by the younger relatively undeformed Neoarchaean high-K calc-alkaline granites. These rocks commenced its evolution during the Palaeo-Archaean (3.3 Ga) and continued to Archaean–Proterozoic Transition (APT). Heterogeneity in granites from southwestern Bundelkhand Craton can be observed in their colour, textural feature and availability of mafic components, thereby dividing them into grey (mafic rich and intermediate variant) and pink granites, which further gets geochemically classified into Closepet-type granites (mafic-rich variant of grey granite: GG), Low Silica High Magnesium monzogranite (LSHM, an intermediate variant of grey granite: IG (for field classification purpose) and High Silica Low Magnesium monzogranite (HSLM, pink granite: PG) on the basis of their major elemental characteristics. The partial melting of the lithologically varied crust and the mantle/lithosphere took place approximately around the same time because of the incompatible element-enriched fluids and melts. This caused the generation of granitoids from Bundelkhand to be varied in nature, resulting in the crustal evolution and stabilisation of the craton around ~3.3 Ga followed by its steady reworking by ~2.57–2.54 Ga. The Closepet type granite resulted from crust-mantle interaction and the monzogranites from crustal melting. Understanding the granitic emplacement within such a short time will help to further decipher the geodynamic changes and the crustal evolutionary processes that were operative during the APT in SW Bundelkhand craton.

Research highlights

  • The manuscript focuses on the geodynamic evolution of the varied granites from SW Bundelkhand Craton.

  • The granites are categorised into grey (mafic-rich grey and intermediate grey) and pink granite on the basis of field geology and petrology. Geochemically they are divided into Closepet type granites (mafic-rich variant of GG) and monzogranites (low silica high magnesium: LSHM, intermediate variant of GG and high silica low magnesium: HSLM, pink granite variant). Their field expressions and the corresponding geochemical signatures can be attributed to a combination of partial melting and fractional crystallisation.

  • The division of granites into a low-silica high-magnesium group indicates crust–mantle interactions (Closepet-granites), and a high-silica low-magnesium group points toward pure crustal melting (monzogranites).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Absar N 2005 Geology and geochemistry of Paleoproterozoic Gwalior Group sediments, Bundelkhand craton, Central India: Implications for provenance, depositional environment, tectonic setting and evolutionary trend of upper continental crust; PhD Thesis, Aligarh Muslim University, India.

  • Absar N, Raza M, Roy M, Naqvi S M and Roy A K 2009 Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: Records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group; Precamb. Res. 168(3–4) 313–329.

    Article  Google Scholar 

  • Alfimova N, Raza M B, Felitsyn S, Matrenichev V, Bogomolov E, Nasipuri P, Saha L, Pati J K and Kumar V 2019 Isotopic Sm–Nd signatures of Precambrian Banded Iron Formation from the Fennoscandian shield, East-European Platform, and Bundelkhand craton, India; Precamb. Res. 328 1–8.

    Article  Google Scholar 

  • Allègre C J and Rousseau D 1984 The growth of the continent through geological time studied by Nd isotope analysis of shales; Earth Planet Sci. Lett. 67(1) 19–34.

    Article  Google Scholar 

  • Allen P, Condie K and Bowling G P 1986 Geochemical characteristics and possible origins of the Southern Closepet batholith, South India; J. Geol. 94(2) 283–299.

    Article  Google Scholar 

  • Almeida J D A C, Dall’Agnol R, Dias S B and Althoff F J 2010 Origin of the Archean leucogranodiorite–granite suites: Evidence from the Rio Maria terrane and implications for granite magmatism in the Archean; Lithos 120(3–4) 235–257.

    Article  Google Scholar 

  • Arth J G and Hanson G N 1972 Quartz diorites derived by partial melting of eclogites or amphibolites at mantle depths; Contrib. Mineral. Petrol. 37 161–174.

    Article  Google Scholar 

  • Arth J G and Hanson G N 1975 Geochemistry and origin of the early Precambrian crust of northeastern Minnesota; Geochim. Cosmochim. Acta 39(3) 325–362.

    Article  Google Scholar 

  • Arth J G 1976 Behavior of trace elements during magmatic processes – a summary of theoretical models and their applications; J. Res. U.S. Geol. Surv. 4(1) 41–47.

    Google Scholar 

  • Atherton M P and Ghani A A 2002 Slab breakoff: A model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland; Lithos 62(3–4) 65–85.

    Article  Google Scholar 

  • Balakrishnan S and Rajamani V 1987 Geochemistry and petrogenesis of granitoids around the Kolar Schist Belt, south India: Constraints for the evolution of the crust in the Kolar area; J. Geol. 95(2) 219–240.

    Article  Google Scholar 

  • Balaram V, Ramesh S L and Anjaiah K V 1996 New trace element and REE data in thirteen GSF reference samples by ICP-MS; Geostand. Newsl. 20(1) 71–78.

    Article  Google Scholar 

  • Barker F and Arth J G 1976 Generation of trondhjemitic–tonalitic liquids and Archean bimodal trondhjemite–basalt suites; Geology 4(10) 596–600.

    Article  Google Scholar 

  • Barker F 1979 Trondhjemite: Definition, environment and hypotheses of origin; Dev. Petrol. 6 1–12.

    Google Scholar 

  • Basu A K 1986 Geology of parts of the Brundelkhand granite massif central India; Rec. Geol. Soc. India 117(2) 61–124.

    Google Scholar 

  • Basu A K 2007 Role of the Bundelkhand Granite Massif and the Son-Narmada megafault in Precambrian crustal evolution and tectonism in central and western India; Geol. Soc. India 70(5) 745.

    Google Scholar 

  • Bea F 1996 Residence of REE, Y, Th and U in granites and crustal protoliths: Implications for the chemistry of crustal melts; J. Petrol. 37(3) 521–552.

    Article  Google Scholar 

  • Bebout G E 2013 Metasomatism in subduction zones of subducted oceanic slabs, mantle wedges, and the slab-mantle interface; In: Metasomatism and the chemical transformation of rock, Springer: Berlin, Heidelberg, Chapter 9, pp. 289–349.

  • Bédard J H 2018 Stagnant lids and mantle overturns: Implications for Archaean tectonics, magma genesis, crustal growth, mantle evolution, and the start of plate tectonics; Geosci. Front. 9(1) 19–49.

    Article  Google Scholar 

  • Belousova E A, Kostitsyn Y A, Griffin W L, Begg G C, O’Reilly S Y and Pearson N J 2010 The growth of the continental crust: Constraints from zircon Hf-isotope data; Lithos 119(3–4) 457–466.

    Article  Google Scholar 

  • Bhattacharjee J 2018 Geochemistry and petrogenesis of granites from south-western Bundelkhand Craton: Elemental and isotopic constraints; PhD Thesis, University of Delhi, India.

  • Bhattacharjee J, Rani K, Prasath A and Heilimo E 2023 Geodynamic evolution of Archaean Continental Crust in Bundelkhand Craton: Insights into Ur supercontinent (Under Review).

  • Bhattacharya A R and Singh S P 2013 Proterozoic crustal scale shearing in the Bundelkhand massif with special reference to quartz reefs; J. Geol. Soc. India 82(5) 474–484.

    Article  Google Scholar 

  • Bhattacharya S, Chaudhary A K and Basei M 2012 Original nature and source of khondalites in the Eastern Ghats Province; India; Geol. Soc. London, Spec. Publ. 365(1) 147–159.

    Article  Google Scholar 

  • Bonin B 2007 A-type granites and related rocks: evolution of a concept, problems and prospects; Lithos 97(1–2) 1–29.

    Article  Google Scholar 

  • Bowen N L 1915 The later stages of the evolution of the igneous rocks; J. Geol. 23(S8) 1–91.

    Article  Google Scholar 

  • Capitanio F A, Nebel O, Cawood P A, Weinberg R F and Clos F 2019 Lithosphere differentiation in the early Earth controls Archean tectonics; Earth Planet. Sci. Lett. 525 115755.

    Article  Google Scholar 

  • Chauhan H, Saikia A and Ahmad T 2018 Episodic crustal growth in the Bundelkhand craton of central India shield: Constraints from petrogenesis of the tonalite–trondhjemite–granodiorite gneisses and K-rich granites of Bundelkhand tectonic zone; J. Earth Syst. Sci. 127(3) 1–34.

    Article  Google Scholar 

  • Chen X, Wang W, Zhang Z, Nie N X and Dauphas N 2020 Evidence from Ab initio and transport modeling for diffusion-driven zirconium isotopic fractionation in igneous rocks; ACS Earth Space Chem. 4(9) 1572–1595.

    Article  Google Scholar 

  • Clemens J D, Stevens G and Farina F 2011 The enigmatic sources of I-type granites: The peritectic connexion; Lithos 126(3–4) 174–181.

    Article  Google Scholar 

  • Colleps C L, McKenzie N R, Sharma M, Liu H, Gibson T M, Chen W and Stockli D F 2021 Zircon and apatite U–Pb age constraints from the Bundelkhand craton and Proterozoic strata of central India: Insights into craton stabilisation and subsequent basin evolution; Precamb. Res. 362 106286.

    Article  Google Scholar 

  • Compton P 1978 Rare-earth evidence for the origin of Nuk gneisses, Buksefjorden region, southern west Greenland; Contrib. Mineral. Petrol. 66 283–294.

    Article  Google Scholar 

  • Condie K C, O’Neill C and Aster R C 2009 Evidence and implications for a widespread magmatic shutdown for 250 My on Earth; Earth Planet Sci. Lett. 282(1–4) 294–298.

    Article  Google Scholar 

  • Condie K C 1993 Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales; Chem. Geol. 104(1–4) 1–37.

    Article  Google Scholar 

  • Condie K C 1989 Origin of the Earth’s crust; Palaeogeogr. Palaeoclimatol. Palaeoecol. 75(1–2) 57–81.

    Article  Google Scholar 

  • Condie K C 2013 Plate tectonics & crustal evolution; 3rd edn, Elsevier, Chapter 10, 337–382.

  • Condie K C 1994 Greenstones through time; Dev. Precamb. Geol. 11 85–120.

    Article  Google Scholar 

  • Condie K C, Beyer E, Belousova E, Griffin W L and O’Reilly S Y 2005 U–Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust; Precamb. Res. 139(1–2) 42–100.

    Article  Google Scholar 

  • Condie K C, Bickford M E, Aster R C, Belousova E and Scholl D W 2011 Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust; Bull. Geol. Soc. India 123(5–6) 951–957.

    Article  Google Scholar 

  • Condie K C 2014 How to make a continent: Thirty-five years of TTG research; In: Evolution of Archean crust and early life (eds) Dilek Y and Furnes H, Springer, Springer Nature, Dordrecht, Chapter 7, pp. 179–193.

  • Davies J H and von Blanckenburg F 1995 Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens; Earth Planet. Sci. Lett. 129(1–4) 85–102.

    Article  Google Scholar 

  • de Oliveira D C, Dall’Agnol R, de Mesquita Barros C E and de Oliveira M A 2009 Geology, geochemistry and magmatic evolution of the Paleoproterozoic, anorogenic oxidised A-type Redenção granite of the Jamon suite, eastern Amazonian craton, Brazil; Can. Mineral. 47(6) 1441–1468.

    Article  Google Scholar 

  • De Souza Z S, Martin H, Peucat J J, Jardim De Sá E F and Macedo M H D F 2007 Calc-alkaline magmatism at the archean–proterozoic transition: The caicó complex basement (NE Brazil); J. Petrol. 48(11) 2149–2185.

    Article  Google Scholar 

  • Deb T and Bhattacharyya T 2018 Interaction between felsic granitoids and mafic dykes in Bundelkhand Craton: A field, petrographic and crystal size distribution study; J. Earth Syst. Sci. 127(7) 1–14.

    Article  Google Scholar 

  • Deevsalar R, Shinjo R, Liégeois J P, Valizadeh M V, Ahmadian J, Yeganehfar H, Murata M and Neill I 2018 Subduction-related mafic to felsic magmatism in the Malayer-Boroujerd plutonic complex, western Iran; Swiss J. Geosci. 111(1) 269–293.

    Article  Google Scholar 

  • Defant M J and Drummond M S 1990 Derivation of some modern arc magmas by melting of young subducted lithosphere; Nature 347(6294) 662–665.

    Article  Google Scholar 

  • Dey S and Moyen J F 2020 Archean granitoids of India: Windows into early Earth tectonics – an introduction; Geol. Soc. London, Spec. Publ. 489 1–13.

    Article  Google Scholar 

  • Dey S, Pandey U K, Rai A K and Chaki A 2012 Geochemical and Nd isotope constraints on petrogenesis of granitoids from NW part of the eastern Dharwar craton: Possible implications for late Archaean crustal accretion; J. Asian Earth Sci. 45 40–56.

    Article  Google Scholar 

  • Dey S, Halla J, Kurhila M, Nandy J, Heilimo E and Pal S 2017 Geochronology of Neoarchaean granitoids of the NW eastern Dharwar craton: Implications for crust formation; Geol. Soc. London, Spec. Publ. 449(1) 89–121.

    Article  Google Scholar 

  • Dhuime B, Hawkesworth C and Cawood P 2011 When continents formed; Science 331(6014) 154–155.

    Article  Google Scholar 

  • Douce A E P 1999 What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?; Geol. Soc. London, Spec. Publ. 168(1) 55–75.

  • El Dien H G, Doucet L S, Murphy J B and Li Z X 2020 Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: Implications for global-scale plate tectonics; Sci. Rep. 10(1) 1–7.

    Google Scholar 

  • Gokarn S G, Rao C K, Selvaraj C, Gupta G and Singh B P 2013 Crustal evolution and tectonics of the Archean Bundelkhand craton, Central India; J. Geol. Soc. India 82(5) 455–460.

    Article  Google Scholar 

  • Goodwin A M 1991 The dynamic evolution of the continental crust; In: Precambrian Geology, Academic Press, Chapter 2, pp. 79–232.

  • Halla J 2005 Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain, eastern Finland: Pb and Nd isotopic constraints on crust–mantle interactions; Lithos 79(1–2) 161–178.

    Article  Google Scholar 

  • Halla J, van Hunen J, Heilimo E and Hölttä P 2009 Geochemical and numerical constraints on Neoarchean plate tectonics; Precamb. Res. 174(1–2) 155–162.

    Article  Google Scholar 

  • Halla J, Whitehouse M J, Ahmad T and Bagai Z 2017 Archaean granitoids: An overview and significance from a tectonic perspective; Geol. Soc. London, Spec. Publ. 449(1) 1–18.

  • Halla J 2018 Highlights on geochemical changes in Archaean granitoids and their implications for early earth geodynamics; Geosciences 8(9) 353.

    Article  Google Scholar 

  • Hawkesworth C J, Blake S, Evans P, Hughes R, Macdonald R, Thomas L E, Turner S P and Zellmer G 2000 Time scales of crystal fractionation in magma chambers – integrating physical, isotopic and geochemical perspectives; J. Petrol. 41(7) 991–1006.

    Article  Google Scholar 

  • Harker A 1909 The natural history of igneous rocks; Nature 81 344.

    Google Scholar 

  • Hawkesworth C J, Cawood P A, Dhuime B and Kemp T I 2017 Earth’s continental lithosphere through time; Annu. Rev. Earth Planet. Sci. 45 169–198.

    Article  Google Scholar 

  • Hawkesworth C, Cawood P A and Dhuime B 2020 The evolution of the continental crust and the onset of plate tectonics; Front. Earth Sci. 8 326.

    Article  Google Scholar 

  • Heilimo E, Halla J and Huhma H 2011 Single-grain zircon U–Pb age constraints of the western and eastern Sanukitoid zones in the Finnish part of the Karelian Province; Lithos 121(1–4) 87–99.

    Article  Google Scholar 

  • Holwell D A, Fiorentini M, McDonald I, Lu Y, Giuliani A, Smith D J, Keith M and Locmelis M 2019 A metasomatised lithospheric mantle control on the metallogenic signature of post-subduction magmatism; Nat. Commun. 10(1) 1–10.

    Article  Google Scholar 

  • Irvine T N and Baragar W R A 1971 A guide to the chemical classification of the common volcanic rocks; Can. J. Earth Sci. 8(5) 523–548.

    Article  Google Scholar 

  • Jahn B M, Glikson A Y, Peucat J J and Hickman A H 1981 REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: Implications for the early crustal evolution; Geochim. Cosmochim. Acta 45(9) 1633–1652.

    Article  Google Scholar 

  • Jahn B M, Auvray B, Cornichet J, Bai Y L, Shen Q H and Liu D Y 1987 3.5 Ga old amphibolites from eastern Hebei Province, China: Field occurrence, petrography, Sm–Nd isochron age and REE geochemistry; Precamb. Res. 34(3–4) 311–346.

    Article  Google Scholar 

  • Janoušek V, Bonin B, Collins W J, Farina F and Bowden P 2020 Post-Archean granitic rocks: contrasting petrogenetic processes and tectonic environments; Geol. Soc. London, Spec. Publ. 491 1–8.

    Article  Google Scholar 

  • Jayananda M, Martin H, Peucat J J and Mahabaleswar B 1995 Late Archaean crust-mantle interactions: Geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, southern India; Contrib. Mineral. Petrol. 119(2–3) 314–329.

    Article  Google Scholar 

  • Jayananda M, Moyen J F, Martin H, Peucat J J, Auvray B and Mahabaleswar B 2000 Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry; Precamb. Res. 99(3–4) 225–254.

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat J J and Capdevila R 2006 2.61 Ga potassic granites and crustal reworking in the Western Dharwar Craton, southern India: Tectonic, geochronologic and geochemical constraints; Precamb. Res. 150(1–2) 1–26.

    Article  Google Scholar 

  • Jayananda M, Santosh M and Aadhiseshan K R 2018 Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India; Earth Sci. Rev. 181 12–42.

    Article  Google Scholar 

  • Jiang H, Jiang S Y, Li W Q, Zhao K D and Peng N J 2018 Highly fractionated Jurassic I-type granites and related tungsten mineralisation in the Shirenzhang deposit, northern Guangdong, South China: Evidence from cassiterite and zircon U-Pb ages, geochemistry and Sr–Nd–Pb–Hf isotopes; Lithos 312 186–203.

    Article  Google Scholar 

  • Joshi K B and Slabunov A I 2019 Neoarchean Sanukitoids from the Karelian and Bundelkhand cratons: Comparison of composition, regional distribution and geodynamic setting; Proc. Karelian Res. Centre Russian Acad. Sci. 2 1–5.

    Google Scholar 

  • Joshi K B, Bhattacharjee J, Rai G, Halla J, Ahmad T, Kurhila M, Heilimo E and Choudhary A K 2017 The diversification of granitoids and plate tectonic implications at the Archaean–Proterozoic boundary in the Bundelkhand Craton, Central India; Geol. Soc. London, Spec. Publ. 449(1) 123–157.

  • Joshi K B, Singh S K, Halla J, Ahmad T and Rai V K 2022 Neodymium isotope constraints on the origin of TTGs and high-K granitoids in the Bundelkhand Craton, Central India: Implications for Archaean Crustal evolution; Lithosphere 2022 (Special 8) 6956845.

  • Kaur P, Zeh A and Chaudhri N 2014 Characterisation and U-Pb–Hf isotope record of the 3.55 Ga felsic crust from the Bundelkhand Craton, northern India; Precamb. Res. 255 236–244.

    Article  Google Scholar 

  • Kaur P, Zeh A, Chaudhri N and Eliyas N 2016 Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, northern India using U-Pb zircon–monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids; Precamb. Res. 281 384–413.

    Article  Google Scholar 

  • Keller C B and Schoene B 2012 Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago; Nature 485(7399) 490–493.

    Article  Google Scholar 

  • Kemp A I S and Hawkesworth C J 2005 Granitic perspectives on the generation and secular evolution of the continental crust; In: Treatise of Geochemistry (ed.) Rudnick R L, Elsevier 3 349–410.

  • Khudier A A, Paquette J L, Nicholson K, Johansson Å, Rooney T O, Hamid S, El-Fadly M A, Corcoran L, Malone S J and El-Rus M A A 2021 On the cratonization of the Arabian-Nubian Shield: Constraints from gneissic granitoids in southeastern Desert, Egypt; Geosci. Front. 12(4) 101148.

    Article  Google Scholar 

  • Kothyari G C and Rastogi B K 2013 Tectonic control on drainage network evolution in the Upper Narmada Valley: Implication to neotectonics; Geogr. J. 2013 1–9.

    Google Scholar 

  • Krogstad E J, Hanson G N and Rajamani V 1991 U–Pb ages of zircon and sphene for two gneiss terranes adjacent to the Kolar Schist Belt, South India: Evidence for separate crustal evolution histories; J. Geol. 99(6) 801–815.

    Article  Google Scholar 

  • Kröner A 1991 Tectonic evolution in the Archaean and Proterozoic; Tectonophys. 187(4) 393–410.

    Article  Google Scholar 

  • Kumar S, Yi K, Raju K, Pathak M, Kim N, Lee T H, Molina J F, Scarrow J H, Bea F and Montero P 2011 SHRIMP U–Pb geochronology of felsic magmatic lithounits in the central part of Bundelkhand Craton, Central India; In: 7th Hutton symposium on Granites and Related Rocks (eds) Molina J F H, Bea J H F and Montero P, Avila, Spain, 83p.

  • Kuno H 1968 Differentiation of basalt magmas; In: Basalts: The Poldervaart treatise on rocks of basaltic composition, Interscience Publishers, New York, pp. 623–688.

  • Kurhila M, Andersen T and Rämö O T 2010 Diverse sources of crustal granitic magma: Lu–Hf isotope data on zircon in three Paleoproterozoic leucogranites of southern Finland; Lithos 115(1–4) 263–271.

    Article  Google Scholar 

  • Laurent O, Martin H, Moyen J F and Doucelance R 2014 The diversity and evolution of late-Archean granitoids: Evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5 Ga; Lithos 205 208–235.

    Article  Google Scholar 

  • Laurent O, Couzinié S, Zeh A, Vanderhaeghe O, Moyen J F, Villaros A, Gardien V and Chelle-Michou C 2017 Protracted, coeval crust and mantle melting during Variscanlate-orogenic evolution: U–Pb dating in the eastern French Massif Central; Int. J. Earth Sci. 106(2) 421–451.

    Article  Google Scholar 

  • Le Maitre R W, Streckeisen A, Zanettin B, Le Bas M J, Bonin B and Bateman P 2005 Igneous rocks: A classification and glossary of terms; 2nd edn, Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, Cambridge University Press, Cambridge, UK, 252p.

  • Lobach-Zhuchenko S B, Rollinson H, Chekulaev V P, Savatenkov V M, Kovalenko A V, Martin H, Guseva N S and Arestova N A 2008 Petrology of a Late Archaean, highly potassic, Sanukitoid pluton from the Baltic Shield: Insights into Late Archaean mantle metasomatism; J. Petrol. 49(3) 393–420.

    Article  Google Scholar 

  • Longjam K C and Ahmad T 2012 Geochemical characterisation and petrogenesis of Proterozoic Khairagarh volcanics: Implication for Precambrian crustal evolution; Geol. J. 47(2–3) 130–143.

    Article  Google Scholar 

  • López-González N, Borrego J, Ruiz F, Carro B, Lozano-Soria O and Abad M 2006 Geochemical variations in estuarine sediments: Provenance and environmental changes (Southern Spain); Estuar. Coast Shelf Sci. 67(1–2) 313–320.

    Article  Google Scholar 

  • Ma Y F, Liu Y J, Wang Y, Qin T, Chen H, Sun W and Zang Y 2020 Late Carboniferous mafic to felsic intrusive rocks in the central Great Xing’an Range, NE China: petrogenesis and tectonic implications; Int. J. Earth Sci. 109(3) 1–23.

    Article  Google Scholar 

  • Ma X H, Qiao S L, Xiang P, Grebennikov A V and Zhou R 2019 Heat-and melt-fluxed melting of lower continental crust: Insights from two types of subduction-related granitoids in northeastern China and the implications for crustal reworking and growth; Lithosphere 11(4) 488–506.

    Article  Google Scholar 

  • Malviya V P 2004 First report of metamorphosed pillow lava in central part of Bundelkhand craton – An Island arc setting of possible late Archean age; Gondwana Res. 7 1338–1340.

    Google Scholar 

  • Malviya V P, Arima M, Pati J K and Kaneko Y 2006 Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in the Mauranipur area: Subduction related volcanism in the Archean Bundelkhand craton, Central India; J. Mineral. Petrol. Sci. 101(4) 199–217.

    Article  Google Scholar 

  • Martin H and Moyen J F 2002 Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth; Geology 30(4) 319–322.

    Article  Google Scholar 

  • Martin H, Chauvel C and Jahn B M 1983 Major and trace element geochemistry and crustal evolution of Archaean granodioritic rocks from eastern Finland; Precamb. Res. 21 159–180.

    Article  Google Scholar 

  • Martin H, Auvray B, Blais S, Capdevila R, Hameurt J, Jahn B M, Piquet D, Querre G and Vidal Ph 1984 Origin and geodynamic evolution of the Archaean crust of eastern Finland; Geol. Soc. Finland Bull. 56 135–160.

    Article  Google Scholar 

  • Martin H 1986 Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas; Geology 14(9) 753–756.

    Article  Google Scholar 

  • Martin H 1999 Adakitic magmas: Modern analogues of Archaean granitoids; Lithos 46(3) 411–429.

    Article  Google Scholar 

  • Martin H, Smithies R H, Rapp R, Moyen J F and Champion D 2005 An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and Sanukitoid: Relationships and some implications for crustal evolution; Lithos 79(1–2) 1–24.

    Article  Google Scholar 

  • Martin H 1994 The Archean grey gneisses and the genesis of continental crust; Dev. Precamb. Geol. 11 205–259.

    Article  Google Scholar 

  • Martin H, Moyen J F, Guitreau M, Blichert-Toft J and Le Pennec J L 2014 Why Archaean TTG cannot be generated by MORB melting in subduction zones; Lithos 198 1–13.

    Article  Google Scholar 

  • Meert J G and Pandit M K 2015 The Archaean and Proterozoic history of Peninsular India: Tectonic framework for Precambrian sedimentary basins in India; Geol. Soc. London Memoir 43(1) 29–54.

    Article  Google Scholar 

  • Meert J G, Pandit M K, Pradhan V R, Banks J, Sirianni R, Stroud M, Newstead B and Gifford J 2010 Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey; J. Asian Earth Sci. 39(6) 483–515.

    Article  Google Scholar 

  • Miller C F, McDowell S M and Mapes R W 2003 Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance; Geology 31(6) 529–532.

    Article  Google Scholar 

  • Mondal M E A, Sharma K K, Rahman A and Goswami J N 1998 Ion microprobe 207Pb/206Pb zircon ages for gneiss-granitoid rocks from Bundelkhand massif: Evidence for Archaean components; Curr. Sci. 74 70–75.

    Google Scholar 

  • Mondal M E A, Goswami J N, Deomurari M P and Sharma K K 2002 Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli protocontinent; Precamb. Res. 117(1–2) 85–100.

    Article  Google Scholar 

  • Moyen J F and Martin H 2012 Forty years of TTG research; Lithos 148 312–336.

    Article  Google Scholar 

  • Moyen J F, Martin H and Jayananda M 2001 Multi-element geochemical modelling of crust– 2016: Mantle interactions during late-Archaean crustal growth: The Closepet granite (South India); Precamb. Res. 112(1–2) 87–105.

    Article  Google Scholar 

  • Moyen J F, Martin H, Jayananda M and Auvray B 2003a Late Archaean granites: A typology based on the Dharwar Craton (India); Precamb. Res. 127(1–3) 103–123.

    Article  Google Scholar 

  • Moyen J F, Nédélec A, Martin H and Jayananda M 2003b Syntectonic granite emplacement at different structural levels: the Closepet granite, south India; J. Struct. Geol. 25(4) 611–631.

    Article  Google Scholar 

  • Moyen J F, Champion D and Smithies R H 2009 The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting; Earth Environ. Sci. Trans. Roy. Soc. Edinb. 100(1–2) 35–50.

    Google Scholar 

  • Moyen J F, Martin H and Jayananda M 1997 Origine du granite fini-Archéen de Closepet (Inde du Sud): Apports de la modélisationgéochimique du comportement des élémentsen trace; C.R. Acad. Sci. Ser. IIA-Earth Planet Sci. 325(9) 659–664.

  • Moyen J F, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, Villaros A and Gardien V 2017 Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth; Lithos 277 154–177.

    Article  Google Scholar 

  • Moyen J F 2020 Archean granitoids: Classification, petrology, geochemistry and origin; Geol. Soc. London, Spec. Publ. 489(1) 15–49.

  • Næraa T, Scherstén A, Rosing M T, Kemp A I S, Hoffmann J E, Fand Kokfelt T and Whitehouse M J 2012 Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago; Nature 485(7400) 627–630.

    Article  Google Scholar 

  • Naqvi S M and Rogers J J W 1987 Precambrian geology of India; Oxford monographs on Geology and Geophysics, Oxford University Press, London, 223p.

  • Nasipuri P, Saha L, Hangqiang X, Pati J K, Satyanaryanan M, Sarkar S, Bhandari A and Gaur Y 2019 Paleoarchean Crustal Evolution of the Bundelkhand Craton, North Central India; Earth’s Oldest Rocks, Elsevier B.V., Chapter 31, pp. 793–817.

  • Nebel O, Capitanio F A, Moyen J F, Weinberg R F, Clos F, Nebel-Jacobsen Y J and Cawood P A 2018 When crust comes of age: On the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics; Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 376(2132) 20180103.

    Article  Google Scholar 

  • Nesbitt R W, Jahn B M and Purvis A C 1982 Komatiites: An early Precambrian phenomenon; J. Volcanol. Geotherm. Res. 14(1–2) 31–45.

    Article  Google Scholar 

  • Nesterova N S, Bayanova T B, Singh V K, Svetov S A and Slabunov A I 2019 Sm–Nd mapping and tectonic division of the Bundelkhand Craton Indian Shield; Transactions of A Fersman Scientific Session of Geological Institute Kola Research Centre, RAS, Apatity, Russia No. 16 421–424.

    Google Scholar 

  • Nsifa E N, Tchameni R and Belinga S M E 1993 De l’existence de formation catarchéennes dans le complexecratonique du ntem (Sud-Cameroun); Projet n° 273, Archaean cratonic rocks of Africa, Abstract Volume 23.

  • Ntieche B, Mohan M R, Moundi A, Nguet P W, Mounjouohou M A, Nchouwet Z and Mfepat D 2021 Petrochemical constraints on the origin and tectonic setting of mafic to intermediate dykes from Tikar plain, Central Cameroon Shear Zone; SN Appl. Sci. 3(2) 1–18.

    Article  Google Scholar 

  • Pandey U K, Bhattacharya D, Sastry D V L N and Pandey B K 2011 Geochronology (Rb–Sr, Sm–Nd and Pb–Pb), isotope geochemisty and evolution of the granites and andesites hosting Mohar Cauldron, Bundelkhand Granite Complex; Shivpuri district, Central India; Explor. Res. Atom. Min. 21 103–116.

    Google Scholar 

  • Paoli G, Dini A, Petrelli M and Rocchi S 2019 HFSE-REE Transfer Mechanisms During Metasomatism of a Late Miocene Peraluminous Granite Intruding a Carbonate Host (Campiglia Marittima, Tuscany); Minerals 9(11) 682.

    Article  Google Scholar 

  • Pati J K 2020 Evolution of Bundelkhand Craton; Episodes J. Int. Geosci. 43(1) 69–87.

    Article  Google Scholar 

  • Pati J K, Poelchau M H, Reimold W U, Nakamura N, Kuriyama Y and Singh A K 2019 Documentation of shock features in impactites from the Dhala impact structure, India; Meteorit. Planet. Sci. 54(10) 2312–2333.

    Article  Google Scholar 

  • Pati J K 1997 Gold mineralisation in parts of Bundelkhand Granitoid Complex (BGC); J. Geol. Soc. India 50 601–606.

    Google Scholar 

  • Pati J K, Patel S C, Pruseth K L, Malviya V P, Arima M, Raju S, Pati P and Prakash K 2007 Geology and geochemistry of giant quartz veins from the Bundelkhand Craton, central India and their implications; J. Earth Syst. Sci. 116(6) 497.

    Article  Google Scholar 

  • Pati J K, Raju S, Malviya V P, Bhushan R, Prakash K and Patel S C 2008 Mafic dykes of Bundelkhand craton, Central India: Field, petrological and geochemical characteristics; Indian Dykes: Geochem. Geophys. Geochron., Narosa Publishing House, New Delhi, pp. 547–569.

  • Pearce J A and Norry M J 1979 Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks; Contrib. Mineral. Petrol. 69(1) 33–47.

    Article  Google Scholar 

  • Pearce J A, Harris N B and Tindle A G 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks; J. Petrol. 25(4) 956–983.

    Article  Google Scholar 

  • Peng P, Qin Z, Sun F, Zhou X, Guo J, Zhai M and Ernst R E 2019 Nature of charnockite and Closepet granite in the Dharwar Craton: Implications for the architecture of the Archean crust; Precamb. Res. 334 105478.

    Article  Google Scholar 

  • Piccolo A, Palin R M, Kaus B J and White R W 2019 Generation of Earth’s early continents from a relatively cool Archean mantle; Geochem. Geophys. Geosys. 20(4) 1679–1697.

    Article  Google Scholar 

  • Pradhan V R, Meert J G, Pandit M K, Kamenov G and Mondal M E A 2012 Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the tectonic evolution and paleogeographic reconstructions; Precamb. Res. 198 51–76.

    Article  Google Scholar 

  • Qin J F, Lai S C, Grapes R, Diwu C R, Ju Y J and Li Y F 2010 Origin of LateTriassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China: Implications for subduction of continental crust; Lithos. 120(3–4) 347–367.

    Article  Google Scholar 

  • Radhakrishna T, Chandra R, Srivastava A K and Balasubramonian G 2013 Central/Eastern Indian Bundelkhand and Bastar cratons in the Palaeoproterozoic supercontinental reconstructions: A palaeomagnetic perspective; Precamb. Res. 226 91–104.

    Article  Google Scholar 

  • Ramiz M M and Mondal M E A 2017 Petrogenesis of mafic magmatic enclaves of the Bundelkhand granitoids near Orchha, Central Indian shield: Evidence for rapid crystallisation; Geol. Soc. London, Spec. Publ. 449(1) 159–173.

  • Ramiz M M, Ahmad I, Mondal M E A and Rahaman W 2022 Multistage Neoarchean magma genesis in the Bundelkhand Craton, India: Evidence from whole-rock elemental and Nd isotopic study of mafic magmatic enclaves and granitoids; Geosyst. Geoenviron. 1 100085.

    Article  Google Scholar 

  • Rao J M, Rao G P, Widdowson M and Kelley S P 2005 Evolution of Proterozoic mafic dyke swarms of the Bundelkhand Granite Massif, central India; Curr. Sci. 88(3) 502–506.

    Google Scholar 

  • Rapp R P, Watson E B and Miller C F 1991 Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites; Precamb. Res. 51(1–4) 1–25.

    Article  Google Scholar 

  • Ray L, Nagaraju P, Singh S P, Ravi G and Roy S 2016 Radioelemental, petrological and geochemical characterisation of the Bundelkhand craton, central India: Implication in the Archaean geodynamic evolution; Int. J. Earth Sci. 105(4) 1087–1107.

    Article  Google Scholar 

  • Roy A B 2019 Indian Shield: Pristine shape, size and tectonic framework; In: Geological Evolution of the Precambrian Indian Shield (ed.) Mondal M E A, Society of Earth Scientists Series, Springer International Publishing AG, Springer Nature. Cham., pp. 1–15.

  • Saha L, Pant N C, Pati J K, Upadhyay D, Berndt J, Bhattacharya A and Satynarayanan M 2011 Neoarchean high-pressure margarite–phengitic muscovite–chlorite corona mantled corundum in quartz-free high-Mg, Al phlogopite–chlorite schists from the Bundelkhand craton, north-central India; Contrib. Mineral. Petrol. 161(4) 511–530.

    Article  Google Scholar 

  • Saha L, Frei D, Gerdes A, Pati J K, Sarkar S, Patole V, Bhandari A and Nasipuri P 2016 Crustal geodynamics from the Archaean Bundelkhand Craton, India: Constraints from zircon U–Pb–Hf isotope studies; Geol. Mag. 153(1) 179–192.

    Article  Google Scholar 

  • Sarkar A, Trivedi J R, Gopalan K, Singh P N, Das A K and Paul D K 1984 Rb–Sr geochronology of Bundelkhand granitic complex in the Jhansi–Babina Talbehat, Uttar Pradesh, India; J. Earth Sci. (CEIS, Sem. Vol.), pp. 64–72.

  • Sarkar A, Sarkar G, Paul G K and Mitra N D 1990 Precambrian geochronology of the Central Indian Shield – a review, Precambrian of Central India; Geol. Surv. India Spec. Publ. 28 453–482.

    Google Scholar 

  • Sarkar S N and Miller J A 1996 Potassium–Argon age data from the Bundelkhand granite and associated rocks and their comparison with the rubidium–Strontium isochron ages; Indian J. Earth Sci. 23 71–78.

    Google Scholar 

  • Sarkar A 1996 Geochronology and geochemistry of mid Archaean Trondhjemitic gneisses from Bundelkhand craton, Central India; Recent Res. Geol. 16 76–92.

    Google Scholar 

  • Sawka W N 1988 REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California; Earth Environ. Sci. Trans. Roy. Soc. Edinb. 79(2–3) 157–168.

    Google Scholar 

  • Schaltegger U and Davies J 2018 Petrochronology of Zircon and Baddeleyite in Igneous Rocks: Reconstructing Magmatic Processes at High Temporal Resolution; Rev. Mineral. Geochem. 83(1) 297–328.

    Article  Google Scholar 

  • Shang C K, Satir M, Nsifa E N, Liégeois J P, Siebel W and Taubald H 2007 Archaean high-K granitoids produced by remelting of earlier Tonalite–Trondhjemite–Granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon; Int. J. Earth Sci. 96(5) 817–841.

    Article  Google Scholar 

  • Sharma K K and Rahman A 1995 Occurrence and petrogenesis of Loda Pahar trondhjemitic gneiss from Bundelkhand craton, Central India: Remnant of an early crust; Curr. Sci. 69 613–617.

    Google Scholar 

  • Sharma K K and Rahman A 1996 Mafic dykes in Bundelkhand granitoids and mafic volcanics in Supra-batholithic volcano-sedimentaries (Bijawar); DST Newslett. 15 17–19.

    Google Scholar 

  • Sharma K K 1998 Geological evolution and crustal growth of the Bundelkhand craton and its relicts in the surrounding regions, N Indian shield; In: The Indian Precambrian (ed.) Paliwal B S, Scientific Publishers, India, pp. 33–43.

    Google Scholar 

  • Sharma K K and Rahman A 2000 The Early Archaean–Paleoproterozoic crustal growth of the Bundelkhand craton, northern Indian shield; Crustal evolution and metallogeny in the northwestern Indian shield, Narosa Publishing House, New Delhi, pp. 51–72.

  • Sharma K K 2000 Evolution of Archaean Palaeoproterozoic Crust of the Bundelkhand Craton, Northern Indian Shield; In: Research Highlights in Earth Sciences (eds) Verma O P and Mahadevan T M, DST’s Spec. Publ. Indian Geol. Cong. 1 95–105.

  • Shirey S B and Hanson G N 1984 Mantle-derived Archaean monozodiorites and trachyandesites; Nature 310(5974) 222–224.

    Article  Google Scholar 

  • Singh S P and Bhattacharya A R 2010 Signatures of Archaean EW crustal-scale shears in the Bundelkhand massif, Central India: An example of vertical ductile shearing; Earth Sci. India 3(IV) 217–225.

    Google Scholar 

  • Singh V K and Slabunov A I 2013 The Greenstone belts of the Bundelkhand craton, Central India: New geochronological data and geodynamic setting; In: 3rd International conference Precambrian Continental Growth and Tectonism (eds) Singh V K and Chandra R, International Association for Gondwana Research Conference Series No. 16, Jhansi, India, pp. 170–171.

    Google Scholar 

  • Singh S P, Subramanyam K S V, Manikyamba C, Santosh M, Singh M R and Kumar B C 2018 Geochemical systematic of the Mauranipur–Babina greenstone belt, Bundelkhand Craton, Central India: Insights on Neoarchean mantle plume-arc accretion and crustal evolution; Geosci. Front. 9 769–788.

    Article  Google Scholar 

  • Singh S P, Singh M M, Srivastava G S and Basu A K 2007 Crustal evolution in Bundelkhand area, central India; J. Himal. Geol. 28(2) 79–101.

    Google Scholar 

  • Singh V K and Slabunov A 2014 The Central Bundelkhand Archaean greenstone complex, Bundelkhand craton, central India: Geology, composition, and geochronology of supracrustal rocks; Int. Geol. Rev. 57(11–12) 1349–1364.

    Google Scholar 

  • Singh S P and Dwivedi S B 2015 High grade metamorphism in the Bundelkhand massif and its implications on Mesoarchean crustal evolution in central India; J. Earth Syst. Sci. 124(1) 197–211.

    Article  Google Scholar 

  • Singh P K, Verma S K, Singh V K, Moreno J A, Oliveira E P and Mehta P 2019 Geochemistry and petrogenesis of Sanukitoids and high-K anatectic granites from the Bundelkhand Craton, India: Implications for late-Archean crustal evolution; J. Asian Earth Sci. 174 263–282.

    Article  Google Scholar 

  • Singh V K, Verma S K, Singh P K, Slabunov A I, Mishra S and Chaudhary N 2020 Archean crustal evolution of the Bundelkhand Craton: Evidence from granitoid magmatism; Geol. Soc. London, Spec. Publ. 489(1) 235–259.

  • Singh P K, Verma S K, Singh V K, Moreno J A, Oliveira E P, Li X H, Malviya V P and Prakash D 2021 Geochronology and petrogenesis of the TTG gneisses and granitoids from the Central Bundelkhand granite-greenstone terrane, Bundelkhand Craton, India: Implications for Archean crustal evolution and cratonization; Precamb. Res. 359 106210.

    Article  Google Scholar 

  • Sizova E, Gerya T, Stüwe K and Brown M 2015 Generation of felsic crust in the Archean: A geodynamic modeling perspective; Precamb. Res. 271 198–224.

    Article  Google Scholar 

  • Skjerlie K P and Johnston A D 1993 Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: Implications for the generation of anorogenic granites; J. Petrol. 34(4) 785–815.

    Article  Google Scholar 

  • Slabunov A I 2013 Comparison of the crustal evolution of the Fennoscandian, Southern African and Indian Shields in the Meso-to Neoarchaean time and Kenorland Supercontinent; In: 3rd International conference Precambrian Continental Growth and Tectonism (eds) Singh V K and Chandra R, International Association for Gondwana Research Conference Series No. 16, Jhansi, India, pp. 173–175.

    Google Scholar 

  • Slabunov A and Singh V K 2018 Bundelkhand and Dharwar cratons (Indian Shield): Comparison of crustal evolution in Archean time; Archaeol. Anthrop., Open Access 3 42–48.

    Google Scholar 

  • Slabunov A I and Singh V K 2019 Meso-Neoarchaean crustal evolution of the Bundelkhand Craton, Indian Shield: New data from greenstone belts; Int. Geol. Rev. 61(11) 1409–1428.

    Article  Google Scholar 

  • Slabunov A, Egorova S, Singh V K, Svetov S and Kumar S 2018 Archean mafic-ultramafic Ikauna layered intrusion, Bundelkhand craton, India: petrography and geochemistry; Global J. Archaeol. Anthropol. Open Access 3 49–55.

    Google Scholar 

  • Smithies R H and Champion D C 2000 The Archaean high-Mg diorite suite: Links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth; J. Petrol. 41(12) 1653–1671.

    Article  Google Scholar 

  • Smithies R H, Champion D C and Cassidy K F 2003 Formation of Earth’s early Archaean continental crust; Precamb. Res. 127(1–3) 89–101.

    Article  Google Scholar 

  • Smithies R H 2000 The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite; Earth Planet. Sci. Lett. 182(1) 115–125.

    Article  Google Scholar 

  • Stern R A and Hanson G N 1991 Archean high-Mg granodiorite: A derivative of light rare earth element-enriched monzodiorite of mantle origin; J. Petrol. 32(1) 201–238.

    Article  Google Scholar 

  • Stern R 1989 Petrogenesis of the Archaean Sanukitoid suite; PhD thesis, State University at Stony Brook, New York.

  • Sylvestern P J 1994 Archean granite plutons; Dev. Precamb. Geol. 11 261–314.

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; Blackwell Scientific Publications, Oxford, 312p.

  • Taylor S R and McLennan S M 1995 The geochemical evolution of the continental crust; Rev. Geophys. 33(2) 241–265.

    Article  Google Scholar 

  • Taylor S R 1987 Geochemical and petrological significance of the Archaean–Proterozoic boundary; Geol. Soc. London, Spec. Publ. 33(1) 3–8.

  • Tchameni R, Mezger K, Nsifa N E and Pouclet A 2000 Neoarchaean crustal evolution in the Congo Craton: Evidence from K rich granitoids of the Ntem Complex, southern Cameroon; J. African Earth Sci. 30(1) 133–147.

    Article  Google Scholar 

  • Valley J W, Lackey J S, Cavosie A J, Clechenko C C, Spicuzza M J, Basei M A S, Bindeman I N, Ferreira V P, Sial A N, King E M and Peck W H 2005 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon; Contrib. Mineral. Petrol. 150(6) 561–580.

    Article  Google Scholar 

  • Verma S K, Verma S P, Oliveira E P, Singh V K and Moreno J A 2016 LA-SF-ICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand Craton, India; J. Asian Earth Sci. 118 125–137.

    Article  Google Scholar 

  • Watkins J M, Clemens J D and Treloar P J 2007 Archaean TTGs as sources of younger granitic magmas: Melting of sodic metatonalites at 0.6–1.2 GPa; Contrib. Mineral. Petrol. 154(1) 91–110.

    Article  Google Scholar 

  • Watson E B and Harrison T M 1983 Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types; Earth Planet. Sci. Lett. 64(2) 295–304.

    Article  Google Scholar 

  • Weiss S and Troll G 1989 The Ballachulish igneous complex, Scotland: Petrography, mineral chemistry, and order of crystallisation in the monzodiorite-quartz diorite suite and in the granite; J. Petrol. 30(5) 1069–1115.

    Article  Google Scholar 

  • Wortel M J R and Spakman W 2000 Subduction and slab detachment in the Mediterranean–Carpathian region; Science 290(5498) 1910–1917.

    Article  Google Scholar 

  • Wu T, Zhang W and Wilde S A 2020 The origin of mafic microgranular enclaves in granitoids: Insights from in situ Sr isotope of plagioclases and Zr–Hf isotopes of zircons; Chem. Geol. 551 119776.

    Article  Google Scholar 

  • Xiong X, Zhu L, Zhang G, Santosh M, Jiang H, Zheng J, Guo A and Ding L 2020 Petrogenesis and tectonic implications of Indosinian granitoids from Western Qinling Orogen, China: Products of magma-mixing and fractionation; Geosci. Front. 11(4) 1305–1321.

    Article  Google Scholar 

  • Yadav B S, Wanjari N, Ahmad T and Chaturvedi R 2016 Geochemistry and petrogenesis of Proterozoic granitic rocks from northern margin of the Chotanagpur Gneissic Complex (CGC); J. Earth Syst. Sci. 125(5) 1041–1060.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Head of the Department of Geology, University of Delhi, for all the facilities provided for the present study. A cordial thanks to the Secretary, MoES, New Delhi. The authors sincerely thank the Editor-in-chief, Prof Somnath Dasgupta and the anonymous reviewers for their constructive reviews and useful suggestions, which helped in improving the manuscript. A special thanks to Prof A K Choudhary from IIT Roorkee for ICP-MS analysis. Last but not least, we thank all our lab colleagues for their steadfast encouragement and support.

Author information

Authors and Affiliations

Authors

Contributions

Joyeeta Bhattacharjee: Conceptualization, visualization,  investigation, writing-original draft, reviewing and editing; Talat Ahmad: Supervision, reviewing and editing.

Corresponding author

Correspondence to Joyeeta Bhattacharjee.

Additional information

Communicated by Somnath Dasgupta

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, J., Ahmad, T. Geochemistry and petrogenesis of Neoarchaean Granitoids from the southwestern Bundelkhand Craton: Implications on Archaean geodynamic evolution. J Earth Syst Sci 132, 149 (2023). https://doi.org/10.1007/s12040-023-02159-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02159-1

Keywords

Navigation