Skip to main content

Advertisement

Log in

Geochemistry of Mesoproterozoic Bijaigarh Shale, Upper Vindhyan Group, Son Valley, India: Implications for source area weathering, provenance and tectonic setting

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The ~1.2 Ga Bijaigarh Shale (BS) is a significant geological formation in the Vindhyan Supergroup of Son Valley and is widely targeted for understanding Mesoproterozoic oceanic redox conditions and crustal evolution. In the present study, we have analysed the major, trace and rare earth elements compositions of the BS and attempted to infer the composition, weathering history, and tectonic setting of the Mesoproterozoic continental crust. The BS is comprised of quartz, smectite, kaolinite and illite, with occasional framboidal pyrites. High chemical index of alteration (CIA) and plagioclase index of alteration (PIA) values, and depletion of Na2O, CaO, Sr and Ba imply that the source region underwent a high degree of chemical weathering under warm and humid climatic conditions. Various immobile element ratios in the BS suggest felsic source rocks and insignificant recycling. Fractionated chondrite normalised REE patterns (La/YbN = 6.7–12.3, avg. 9.5) and negative Eu anomalies (Eu/Eu* = 0.50–0.60, avg. 0.53) also indicate felsic provenance. REE mixing modelling implies that the source area was comprised of 40% Mahakoshal Granite, 25% Bundelkhand Granite, 30% Porcellanite and 5% Chhotanagpur Granite Gneiss Complex (CGGC). The sedimentation in Kaimur basin is thought to have begun at ~1.2 Ga, accompanied with the crustal extension in the aftermath of Central Indian Tectonic Zone (CITZ) orogeny (1.6–1.5 Ga) and domal uplift of Bundelkhand craton. The positive areas were created by orogenic movements, which exposed the older crustal blocks containing granites and metamorphic rocks in the CITZ (Chhotanagpur Gneisses and Mahakoshal belt) and Bundelkhand granite complex (BGC). The Mahakoshal Group and CGGC located on the southern side, the BGC on the northern side of the basin, and the uplifted Lower Vindhyans were the likely sources of the BS. Such source areas are also indicated by the palaeoflow directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Absar N 2021 Mineralogy and geochemistry of siliciclastic Miocene Cuddalore formation, Cauvery Basin, South India: Implications for provenance and paleoclimate; J. Palaeogeogr. 10(4) 602–630.

    Article  Google Scholar 

  • Absar N and Sreenivas B 2015 Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: Evidence for active margin processes; Int. Geol. Rev. 57(2) 134–158.

    Article  Google Scholar 

  • Absar N, Raza M, Roy M, Naqvi S M and Roy A K 2009 Composition and weathering conditions of Palaeoproterozoic upper crust of Bundelkhand Craton, Central India: Records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group; Precamb. Res. 168 313–329.

    Article  Google Scholar 

  • Absar N, Nizamudheen B M and Augustine S 2016 Petrography, clay mineralogy and geochemistry of clastic sediments of Proterozoic Bhima Group, Eastern Dharwar Craton, India: Implications for provenance and tectonic setting; J. Appl. Geochem. 18(3) 237–250.

    Google Scholar 

  • Ahmad F, Amir M, Quasim M A, Absar N and Ahmad A H M 2022 Petrography and geochemistry of the Middle Jurassic Fort Member Sandstone, Jaisalmer Formation, Western India: Implications for weathering, provenance, and tectonic setting; Geol. J. 57(5) 1741–1758.

    Article  Google Scholar 

  • Ansari A H, Ahmad S, Govil P, Agrawal S and Mathews R P 2020 Mo–Ni and organic carbon isotope signatures of the mid-late Mesoproterozoic oxygenation; J. Asian Earth Sci. 191 104201.

    Article  Google Scholar 

  • Armstrong-Altrin J S 2009 Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico; Rev. Mex. Cienc. Geol. 26(3) 764–782.

    Google Scholar 

  • Armstrong-Altrin J S, Lee Y I, Verma S P and Ramasamy S 2004 Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic setting; J. Sedim. Res. 74(2) 285–297.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Ramos-Vázquez M A, Madhavaraju J, Marca-Castillo M E, Machain-Castillo M L and Márquez-García A Z 2022 Geochemistry of marine sediments adjacent to the Los Tuxtlas Volcanic Complex, Gulf of Mexico: Constraints on weathering and provenance; Appl. Geochem. 141 105321.

    Article  Google Scholar 

  • Asiedu D K, Hegner E, Rocholl A and Atta-Peters D 2005 Provenance of late Ordovician to early Cretaceous sedimentary rocks from southern Ghana, as inferred from Nd isotopes and trace elements; J. Afr. Earth Sci. 41(4) 316–328.

    Article  Google Scholar 

  • Auden J B 1933 Vindhyan sedimentation in the Son Valley, Mirzapur district; Geol. Surv. India Memoir 62(2) 141–250.

    Google Scholar 

  • Azmi R J, Joshi D, Tiwari B N, Joshi M N and Srivastava S S 2008 A synoptic view on the current discordant geo- and biochronological ages of the Vindhyan Supergroup, central India; Him. Geol. 29(2) 177–191.

    Google Scholar 

  • Banerjee I 1974 Barrier coastline sedimentation model and the Vindhyan example; In: Contributions to the Earth and Planetary Sciences Golden Jubilee Volume, J. Min. Metall. Soc. India 46 101–127.

  • Banerjee S, Dutta S, Paikaray S and Man U 2006 Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (central India); J. Earth Syst. Sci. 115(1) 37–47.

    Article  Google Scholar 

  • Bankole O M, El Albani A, Meunier A, Poujol M and Bekker A 2020 Elemental geochemistry and Nd isotope constraints on the provenance of the basal siliciclastic succession of the middle Paleoproterozoic Francevillian Group, Gabon; Precamb. Res. 348 105874.

    Article  Google Scholar 

  • Basu P, Banerjee A and Chakrabarti R 2021 A combined geochemical, Nd, and stable Ca isotopic investigation of provenance, paleo-depositional setting and sub-basin connectivity of the Proterozoic Vindhyan Basin, India; Lithos 388 106059.

    Article  Google Scholar 

  • Bennett W W and Canfield D E 2020 Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments; Earth Sci. Rev. 204 103175.

    Article  Google Scholar 

  • Berner R A 1982 Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance; Am. J. Sci. 282, https://doi.org/10.2475/ajs.282.4.451.

    Article  Google Scholar 

  • Bhat M I and Ghosh S K 2001 Geochemistry of the 2.51 Ga old Rampur group pelites, western Himalayas: Implications for their provenance and weathering; Precamb. Res. 108(1–2) 1–16.

    Article  Google Scholar 

  • Bhatia M R 1983 Plate tectonics and geochemical composition of sandstones; J. Geol. 91(6) 611–627.

    Article  Google Scholar 

  • Bhatia M R and Crook K A 1986 Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins; Contrib. Mineral. Petrol. 92(2) 181–193.

    Article  Google Scholar 

  • Bhattacharyya A and Morad S 1993 Proterozoic braided ephemeral fluvial deposits: An example from the Dhandraul Sandstone Formation of the Kaimur Group, Son Valley, central India; Sedim. Geol. 84(1–4) 101–114.

    Article  Google Scholar 

  • Bose P K, Banerjee S and Sarkar S 1997 Slope-controlled seismic deformation and tectonic framework of deposition: Koldaha Shale, India; Tectonophys. 269(1–2) 151–169.

    Article  Google Scholar 

  • Bose P K, Sarkar S, Chakrabarty S and Banerjee S 2001 Overview of the Meso- to Neoproterozoic evolution of the Vindhyan basin, central India; Sedim. Geol. 141 395–419.

    Article  Google Scholar 

  • Chakrabarti R, Basu A R and Chakrabarti A 2007 Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India; Precamb. Res. 159(3–4) 260–274.

    Article  Google Scholar 

  • Chakraborty C 1995 Gutter casts from the Proterozoic Bijaygarh Shale Formation, India: Their implication for storm-induced circulation in shelf settings; Geol. J. 30 69–78.

    Article  Google Scholar 

  • Chakraborty C 2006 Proterozoic intracontinental basin: The Vindhyan example; J. Earth Syst. Sci. 115(1) 3–22.

    Article  Google Scholar 

  • Chakraborty C and Bose P K 1992 Rhythmic shelf storm beds: Proterozoic Kaimur Formation, India; Sedim. Geol. 77 259–268.

    Article  Google Scholar 

  • Chakraborty P P, Dey S and Mohanty S P 2010 Proterozoic platform sequences of Peninsular India: Implications towards basin evolution and supercontinent assembly; J. Asian Earth Sci. 39(6) 589–607.

    Article  Google Scholar 

  • Chattopadhyay A, Bhowmik S K and Roy A 2020 Tectonothermal evolution of the Central Indian Tectonic Zone and its implications for Proterozoic supercontinent assembly: The current status; Episodes J. Int. Geosci. 43(1) 132–144.

    Article  Google Scholar 

  • Condie K C 1993 Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales; Chem. Geol. 104(1–4) 1–37.

    Article  Google Scholar 

  • Condie K C and Wronkiewicz D J 1990 A new look at the Archean Proterozoic boundary: Sediments and the tectonic setting constraint; In: Precambrian Continental Crust and its Economic Resources (ed.) Naqvi S M, Elsevier, Amsterdam, pp. 61–84.

    Chapter  Google Scholar 

  • Condie K C, Lee D and Farmer G L 2001 Tectonic setting and provenance of the Neoproterozoic Uinta Mountain and Big Cottonwood groups, northern Utah: Constraints from geochemistry, Nd isotopes, and detrital modes; Sedim. Geol. 141 443–464.

    Article  Google Scholar 

  • Cox R, Lowe D R and Cullers R L 1995 The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States; Geochim. Cosmochim. Acta 59(14) 2919–2940.

    Article  Google Scholar 

  • Cullers R L 1988 Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, USA; Lithos 21(4) 301–314.

    Article  Google Scholar 

  • Cullers R L 2000 The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies; Lithos 51(3) 181–203.

    Article  Google Scholar 

  • Cullers R L 2002 Implications of elemental concentrations for provenance, redox conditions and metamorphic studies of shales and limestones near Pueblo, CO, USA; Chem. Geol. 191 305–327.

    Article  Google Scholar 

  • Cullers R L and Podkovyrov V N 2000 Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling; Precamb. Res. 104(1–2) 77–93.

    Article  Google Scholar 

  • DePaolo D J, Linn A M and Schubert G 1991 The continental crustal age distribution: Methods of determining mantle separation ages from Sm–Nd isotopic data and application to the southwestern United States; J. Geophys. Res. Solid Earth 96(B2) 2071–2088.

    Article  Google Scholar 

  • Eriksson P G, Condie K C, Tirsgaard H, Mueller W U, Altermann W, Miall A D, Aspler L B, Catuneanu O and Chiarenzelli J R 1998 Precambrian clastic sedimentation systems; Sedim. Geol. 120(1–4) 5–53.

    Article  Google Scholar 

  • Fedo C M, Wayne Nesbitt H and Young G M 1995 Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance; Geology 23(10) 921–924.

    Article  Google Scholar 

  • Floyd P A and Leveridge B E 1987 Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones; J. Geol. Soc. 144(4) 531–542.

    Article  Google Scholar 

  • Foley S, Tiepolo M and Vannucci R 2002 Growth of early continental crust controlled by melting of amphibolite in subduction zones; Nature 417(6891) 837–840.

    Article  Google Scholar 

  • Fralick P W and Kronberg B I 1997 Geochemical discrimination of clastic sedimentary rock sources; Sedim. Geol. 113(1–2) 111–124.

    Article  Google Scholar 

  • Garver J and Scott T 1995 Trace element geochemistry of shale as a provenance indicator of terrane accretion in southern British Columbia; Geol. Soc. Am. Bull. 107 440–453.

    Article  Google Scholar 

  • Ghandour I M, Harue M and Wataru M 2003 Mineralogical and chemical characteristics of Bajocian–Bathonian shales, G. Al-Maghara, North Sinai, Egypt: Climatic and environmental significance; Geochem. J. 37 87–108.

    Article  Google Scholar 

  • Ghaznavi A A, Khan I, Quasim M A and Ahmad A H M 2018 Provenance, tectonic setting, source weathering and palaeoenvironmental implications of Middle-Upper Jurassic rocks of Ler dome, Kachchh, western India: Inferences from petrography and geochemistry; Chemie Der Erde-Geochem. 78(3) 356–371.

    Article  Google Scholar 

  • Ghosh S and Sarkar S 2010 Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: Clues for provenance; Chem. Geol. 277(1–2) 78–100.

    Article  Google Scholar 

  • Gilleaudeau G J, Sahoo S K, Ostrander C M, Owens J D, Poulton S W, Lyons T W and Anbar A D 2020 Molybdenum isotope and trace metal signals in an iron-rich Mesoproterozoic ocean: A snapshot from the Vindhyan Basin, India; Precamb. Res. 343 105718.

    Article  Google Scholar 

  • Gonzalez-Alvarez I and Kerrich R 2012 Weathering intensity in the Mesoproterozoic and modern large-river systems: A comparative study in the Belt-Purcell Supergroup, Canada and USA; Precamb. Res. 208 174–196.

    Article  Google Scholar 

  • Gopalan K, Kumar A, Kumar S and Vijayagopal B 2013 Depositional history of the Upper Vindhyan succession, central India: Time constraints from Pb–Pb isochron ages of its carbonate components; Precamb. Res. 233 108–117.

    Article  Google Scholar 

  • Gregory L C, Meert J G, Pradhan V, Pandit M K, Tamrat E and Malone S J 2006 A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: Implications for the age of the Upper Vindhyan Supergroup; Precamb. Res. 149 65–75.

    Article  Google Scholar 

  • Hallam A, Grose J A and Ruffell A H 1991 Paleoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France; Palaeogeogr. Palaeoclimatol. Palaeoecol. 81 173–187.

    Article  Google Scholar 

  • Harnois L 1988 The CIW index: A new chemical index of weathering; Sedim. Geol. 55(3) 319–322.

    Article  Google Scholar 

  • Hayashi K I, Fujisawa H, Holland H D and Ohmoto H 1997 Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada; Geochim. Cosmochim. Acta 61(19) 4115–4137.

    Article  Google Scholar 

  • Hendriks F, Luger P and Strouhal A 1990 Early tertiary marine palygorskite and sepiolite neoformation in SE Egypt; Z. Deut. Geol. Ges. 141 87–97.

    Google Scholar 

  • Jafar S A, Akhtar K and Srivastava V K 1966 Vindhyan paleocurrents and their bearing on the northern limit of the Vindhyan sedimentation a preliminary note; Bull. Geol. Soc. India 3 82–84.

    Google Scholar 

  • Kale V S and Phansalkar V G 1991 Purana basins of peninsular India: A review; Basin Res. 3(1) 1–36.

    Article  Google Scholar 

  • Krishna A K, Murthy N N and Govil P K 2007 Multi-element analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry; At. Spectrosc. Norwalk Connecticut 28(6) 202.

    Google Scholar 

  • Kumar A, Kumari P, Dayal A M, Murthy D S N and Gopalan K 1993 Rb–Sr ages of Proterozoic kimberlites of India: Evidence for contemporaneous emplacements; Precamb. Res. 62 227–237.

    Article  Google Scholar 

  • Lee Y II 2009 Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: Implications for provenance and source weathering at an active continental margin; Sedim. Geol. 215(1–4) 1–12.

    Article  Google Scholar 

  • Long X, Yuan C, Sun M, Xiao W, Wang Y, Cai K and Jiang Y 2012 Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central Asia: Evidence for a northward-derived mafic source and insight into Nd model ages in accretionary orogen; Gondwana Res. 22 554–566.

    Article  Google Scholar 

  • McLennan S M 1993 Weathering and global denudation; J. Geol. 101(2) 295–303.

    Article  Google Scholar 

  • McLennan S M, Nance W B and Taylor S R 1980 Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust; Geochim. Cosmochim. Acta 44(11) 1833–1839.

    Article  Google Scholar 

  • McLennan S M, Hemming S, McDaniel D K and Hanson G N 1993 Geochemical approaches to sedimentation, provenance, and tectonics; Geol. Soc. Am. Spec. Papers 21, https://doi.org/10.1130/SPE284-p21.

  • McLennan S M, Hemming S R, Taylor S R and Eriksson K A 1995 Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America; Geochim. Cosmochim. Acta 59(6) 1153–1177.

    Article  Google Scholar 

  • Misra R C 1969 The Vindhyan system; Proceedings of the Indian Science Congress, 56th Session, Part 2, pp. 111–142.

  • Mishra M and Sen S 2008 Geochemistry and origin of Proterozoic porcellanitic shales from Chopan, Vindhyan basin, India; Indian J. Geol. 80(1–4) 157–171.

    Google Scholar 

  • Mishra M and Sen S 2012 Provenance, tectonic setting and source-area weathering of Mesoproterozoic Kaimur Group, Vindnyan Supergroup, Central India; Geol. Acta 10(3) 283–294.

    Google Scholar 

  • Mondal M E A, Goswami J N, Deomurari M P and Sharma K K 2002 Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand–Aravalli protocontinent; Precamb. Res. 117(1–2) 85–100.

    Article  Google Scholar 

  • Morad S, Bhattacharyya A, Al-Aasm I S and Ramseyer K 1991 Diagenesis of quartz in the Upper Proterozoic Kaimur sandstones, Son valley, central India; Sedim. Geol. 73(3–4) 209–225.

    Article  Google Scholar 

  • Mukherjee I, Deb M, Large R R, Halpin J, Meffre S, Ávila J and Belousov I 2020 Pyrite textures, trace elements and sulfur isotope chemistry of Bijaigarh Shales, Vindhyan Basin, India and their implications; Minerals 10(7) 588.

    Article  Google Scholar 

  • Nesbitt H W and Markovics G 1980 Chemical processes affecting alkalis and alkaline earths during continental weathering; Geochim. Cosmochim. Acta 44(11) 1659–1666.

    Article  Google Scholar 

  • Nesbitt H and Young G M 1982 Early Proterozoic climates and plate motions inferred from major element chemistry of lutites; Nature 299(5885) 715–717.

    Article  Google Scholar 

  • Osae S, Asiedu D K, Banoeng-Yakubo B, Koeberl C and Dampare S B 2006 Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana: Evidence from geochemistry and detrital modes; J. Afr. Earth Sci. 44 85–96.

    Article  Google Scholar 

  • Paikaray S, Banerjee S and Mukherji S 2008 Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering; J. Asian Earth Sci. 32(1) 34–48.

    Article  Google Scholar 

  • Panahi A and Young G M 1997 A geochemical investigation into the provenance of the Neoproterozoic Port Askaig Tillite, Dalradian Supergroup, western Scotland; Precamb. Res. 85(1–2) 81–96.

    Article  Google Scholar 

  • Panahi A, Young G M and Rainbird R H 2000 Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada; Geochim. Cosmochim. Acta 64(13) 2199–2220.

    Article  Google Scholar 

  • Pandalai H S, Majumder T and Chandra D 1983 Geochemistry of pyrite and black shales of Amjhore, Rohtas District, Bihar, India; Econ. Geol. 78(7) 1505–1513.

    Article  Google Scholar 

  • Pandey U K, Bhattacharya D, Sastry D V L N and Pandey B K 2011 Geochronology (Rb–Sr, Sm–Nd and Pb–Pb), isotope geochemistry and evolution of the granites and andesites hosting Mohar cauldron, Bundelkhand granite complex, Shivpuri district, Central India; Explor. Res. Atomic Min. 21 103–116.

    Google Scholar 

  • Prakash R and Dalela I K 1982 Stratigraphy of the Vindhyan in Uttar Pradesh: A brief review; In: Geology of Vindhyanchal (eds) Valdiya K S, Bhatia S B and Gaur V K, Hindustan Publishing Corporation, Delhi, pp. 55–79.

    Google Scholar 

  • Quasim M A, Ahmad A H M and Ghosh S K 2017 Depositional environment and tectono-provenance of Upper Kaimur Group sandstones, Son Valley, Central India; Arab. J. Geosci. 10(1) 4.

    Article  Google Scholar 

  • Quasim M A, Hota R N, Ahmad A H M and Albaroot M 2018 An approach to provenance and tectonic setting of the Proterozoic Upper Kaimur Group sandstones, Son Valley: Constraints from framework mineralogy and heavy mineral analysis; Him. Geol. 39(2) 145–160.

    Google Scholar 

  • Quasim M A, Ghosh S K, Ahmad A H M, Srivastava V K and Albaroot M 2020 Integrated approach of lithofacies and granulometric analysis of the sediments of the Proterozoic Upper Kaimur Group of Vindhyan Supergroup, Son Valley, India: Palaeo-environmental implications; Geol. J. 55 5991–6012.

    Article  Google Scholar 

  • Ram J, Shukla S N, Pramanik A G and Verma B K 1996 Recent investigations in the Vindhyan basin: Implications for the basin tectonics; In: Recent Advances in Vindhyan Geology (ed.) Bhattacharya A, Geol. Soc. India Memoir 36 267–286.

  • Ramakrishnan M and Vaidyanadhan R 2008 Geology of India; Volume I, Geol. Soc. India, Bangalore.

  • Rashid S A, Ahmad S, Singh S K and Absar N 2018 Elemental and Sr-Nd isotopic geochemistry of Mesoproterozoic sedimentary successions from NE Lesser Himalaya, northern India: Implications for Proterozoic climate and tectonics; J. Asian Earth Sci. 163 235–248.

    Article  Google Scholar 

  • Rasmussen B, Bose P K, Sarkar S, Banerjee S, Fletcher I R and McNaughton N J 2002 1.6 Ga U–Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: Possible implications for the early evolution of animals; Geology 30 103–106.

  • Ray J S 2006 Age of the Vindhyan Supergroup: A review of recent findings; J. Earth Syst. Sci. 115(1) 149–160.

    Article  Google Scholar 

  • Ray J S, Martin M W, Veizer J and Bowring S A 2002 U–Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India; Geology 30 131–134.

    Article  Google Scholar 

  • Ray J S, Veizer J and Davis W J 2003 C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: Age, diagenesis, correlations and implications for global events; Precamb. Res. 121 103–140.

    Article  Google Scholar 

  • Raza M, Bhardwaj V R, Ahmad A H M, Mondal M E A, Khan A and Khan M S 2010a Provenance and weathering history of Archaean Naharmagra quartzite of Aravalli craton, NW Indian shield: Petrographic and geochemical evidence; Geochem. J. 44 331–345.

    Article  Google Scholar 

  • Raza M, Dayal A M, Khan A, Bhardwaj V R and Khan M S 2010b Geochemistry of Lower Vindhyan clastic sedimentary rocks of Northwestern Indian Shield: Implications for composition and weathering history of Proterozoic continental crust; J. Asian Earth Sci. 30 51–61.

    Article  Google Scholar 

  • Roddaz M, Debat P and Nikiema S 2007 Geochemistry of upper Birimian sediments (major and trace elements and Nd–Sr isotopes) and implications for weathering and tectonic setting of the Late Palaeoproterozoic crust; Precamb. Res. 159 197–211.

    Article  Google Scholar 

  • Roser B P and Korsch R J 1986 Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio; J. Geol. 94(5) 635–650.

    Article  Google Scholar 

  • Roser B P and Korsch R J 1988 Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data; Chem. Geol. 67(1–2) 119–139.

    Article  Google Scholar 

  • Roy A B 1988 Stratigraphic and tectonic framework of the Aravalli mountain range; In: Precambrian of the Aravalli Mountain, Rajasthan, India (ed.) Roy A B, Geol. Soc. India Memoir 7 3–32.

  • Roy A and Prasad M H 2003 Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implications in Rodinian crustal assembly; J. Asian Earth Sci. 22(2) 115–129.

    Article  Google Scholar 

  • Rudnick R L, Gao S, Holland H D and Turekian K K 2003 The composition of the continental crust; In: The Crust (eds) Holland H D and Turekian K K, Elsevier-Pergamon, Oxford, 3 1–64.

  • Saha A, Basu A R, Garzione C N, Bandyopadhyay P K and Chakrabarti A 2004 Geochemical and petrological evidence for subduction–accretion processes in the Archean Eastern Indian Craton; Earth Planet. Sci. Lett. 220(1–2) 91–106.

    Article  Google Scholar 

  • Saikia A, Gogoi B, Kaulina T, Lialina L, Bayanova T and Ahmad M 2017 Geochemical and U–Pb zircon age characterisation of granites of the Bathani Volcano Sedimentary sequence, Chotanagpur Granite Gneiss Complex, eastern India: Vestiges of the Nuna supercontinent in the Central Indian Tectonic Zone; Geol. Soc. London, Spec. Publ. 457(1) 233–252.

  • Sarangi S, Gopalan K and Kumar S 2004 Pb–Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: Implications for Precambrian atmospheric oxygen evolution; Precamb. Res. 132(1–2) 107–121.

    Article  Google Scholar 

  • Sarkar A, Chakraborty P P, Mishra B, Bera M K, Sanyal P and Paul S 2010 Mesoproterozoic sulphidic ocean, delayed oxygenation and evolution of early life: Sulphur isotope clues from Indian Proterozoic basins; Geol. Mag. 147(2) 206–218.

    Article  Google Scholar 

  • Sastry M V A and Moitra A K 1984 Vindhyan stratigraphy – a review; Geol. Surv. India Memoir 116 109–148.

    Google Scholar 

  • Sen S and Mishra M 2020 Source rock composition of Kaimur Group siliciclastics from Vindhyan Supergroup, Central India: A response to thermal events associated with Bundelkhand Craton and Chhotanagpur Gneissic Complex at ~1.1 Ga; Geol. J. 55(6) 4128–4158.

  • Singh I B 1980 The Bijaigarh shale, Vindhyan system (Precambrian), India – an example of a lagoonal deposit; Sedim. Geol. 25(1–2) 83–103.

    Article  Google Scholar 

  • Singh A K and Chakraborty P P 2022 Shales of Palaeo-Mesoproterozoic Vindhyan Basin, central India: Insight into sedimentation dynamics of Proterozoic shelf; Geol. Mag. 159(2) 247–268.

    Article  Google Scholar 

  • Singh A K, Chakraborty P P and Sarkar S 2018 Redox structure of Vindhyan hydrosphere: Clues from total organic carbon, transition metal (Mo, Cr) concentrations and stable isotope (delta C-13) chemistry; Curr. Sci. 115(7) 1334–1341.

    Article  Google Scholar 

  • Singh B P, Mondal K, Singh A, Mittal P, Singh R K and Kanhaiya S 2020 Seismic origin of the soft-sediment deformation structures in the upper Palaeo-Mesoproterozoic Semri Group, Vindhyan Supergroup, central India; Geol. J. 55 7474–7488.

    Article  Google Scholar 

  • Sun S S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; In: Magmatism in the Ocean Basins (eds) Saunder A D and Norry M J, Geol. Soc. London, Spec. Publ. 42 313–345.

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; Blackwell, Oxford, 321p.

    Google Scholar 

  • Tripathy G R and Singh S K 2015 Re–Os depositional age for black shales from the Kaimur Group, Upper Vindhyan, India; Chem. Geol. 413 63–72.

    Article  Google Scholar 

  • Valdiya K S 2010 The making of India: Geodynamic evolution; Macmillan Publishers India Ltd., Delhi, 816p.

    Google Scholar 

  • Verma R K 1991 Geodynamics of the Indian peninsula and the Indian plate margin; South Asia Books.

  • Verma S P and Armstrong-Altrin J S 2013 New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins; Chem. Geol. 355 117–133.

    Article  Google Scholar 

  • Verma S P and Armstrong-Altrin J S 2016 Geochemical discrimination of siliciclastic sediments from active and passive margin settings; Sedim. Geol. 332 1–12.

    Article  Google Scholar 

  • Vinod K S and Alexander S 2015 The Central Bundelkhand Archaean greenstone complex, Bundelkhand craton, central India: Geology, composition, and geochronology of supracrustal rocks; Int. Geol. Rev. 57(11–12) 1349–1364.

    Google Scholar 

  • Wronkiewicz D J and Condie K C 1987 Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance; Geochim. Cosmochim. Acta 51(9) 2401–2416.

    Article  Google Scholar 

  • Yadav B S, Ahmad T, Kaulina T, Bayanova T and Bhutani R 2020 Origin of post-collisional A-type granites in the Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone, India: Zircon U–Pb ages and geochemical evidences; J. Asian Earth Sci. 191 104247.

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Chairperson, Department of Geology, A.M.U. Aligarh for providing the necessary facilities during the study. The authors thank authorities of the Department of Earth Sciences, Pondicherry University, for extending the ICP-MS facility for trace element analysis. We would like to express our gratitude to the two anonymous reviewers for their critical comments and recommendations, which have significantly improved the quality of this manuscript. We thank Prof. Joydip Mukhopadhyay, Associate Editor of the Journal of Earth System Science, for efficient editorial handling.

Author information

Authors and Affiliations

Authors

Contributions

M A Quasim: Conception, design of the study, data analysis and drafting of the original manuscript. Nurul Absar: Supervised in geochemical data generation, data analysis, review and editing of the manuscript. B P Singh: Data analysis, writing of the draft manuscript and overall supervision. Faiz Ahmad: Carried out fieldwork, co-designed the work and contributed to the finalisation of the manuscript. M Ashok: Geochemical analysis of samples and drafting of methodology section.

Corresponding author

Correspondence to M A Quasim.

Additional information

Communicated by Joydip Mukhopadhyay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quasim, M.A., Absar, N., Singh, B.P. et al. Geochemistry of Mesoproterozoic Bijaigarh Shale, Upper Vindhyan Group, Son Valley, India: Implications for source area weathering, provenance and tectonic setting. J Earth Syst Sci 132, 115 (2023). https://doi.org/10.1007/s12040-023-02131-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02131-z

Keywords

Navigation