Skip to main content

Advertisement

Log in

Bimodal volcanism in Betul Fold Belt, central India: Implications on petrogenesis

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Betul Fold Belt (BFB) present in the Central Indian Tectonic Zone (CITZ) is a mosaic of supracrustal volcano-sedimentary sequences, mafic–ultramafic rocks, and granitoid. In this belt, bimodal volcanics are represented by basalts and rhyolites from the Baragaon Group. The basalts comprise altered olivine, clinopyroxene, plagioclase, and accessory Fe–Ti oxides embedded within hypocrystalline groundmass comprising plagioclase, clinopyroxene, and amphiboles. They are characterised by high LREE, LILE over HREE, and negative Nb, Ta, Zr, and Hf anomalies. In contrast, the rhyolites comprise quartz, plagioclase, and alkali feldspar with enriched LREE and prominent negative Nb, Ta, Sr, and Ti anomalies. The low Nb/La, Th/Nb, Th/La, and Th/Ce ratios combined with consistent Nb/Th ratios favour insignificant crustal contamination for basalts. The high Ba/Nb, Ba/Th ratios and low Th content of basalts suggest the incorporation of slab-derived aqueous fluids into the mantle source. The rhyolites are classified as type-I (low ∑REE and HFSE) and type-II (high ∑REE and HFSE), in which the former follows the basaltic partial melting trend, while the latter indicates the pure crystal fractionation process. The low Sr/Y (0.4–3.5) and La/Yb (4–10.1) ratios of rhyolites depict their generation at the plagioclase stability field. Trace element modelling demonstrates that the Betul basalts erupted from ~8 to 10% partial melting of SCLM in the spinel-garnet transition zone. In contrast, the type-I rhyolites are generated by the ~10% partial melting of underplated juvenile basaltic rocks followed by separation of 75% melt generated due to crustal assimilation induced fractional crystallisation, and the type-II rhyolites are produced by ~79% fractional crystallisation of the least evolved rhyolite. The zircon saturation temperatures (TZr = 788°–928°C) infer the higher temperatures required for the generation of these rhyolites in the convergent margin. These bimodal volcanic rocks are generated in the arc-rifting environment of the convergent margin regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Ahmad T, Longjam K C, Fouzdar B, Bickle M J and Chapman H J 2009 Petrogenesis and tectonic setting of bimodal volcanism in the Sakoli Mobile belt, Central Indian Shield; Island Arc 18 155–174.

    Article  Google Scholar 

  • Arth J G 1976 Behaviour of trace elements during magmatic processes – a summary of theoretical models and their applications; J. Res., U.S. Geol. Surv. 4 41–47.

    Google Scholar 

  • Aydin F, Schmitt A K, Siebel W, Sönmez M, Ersoy Y, Lermi A, Dirik K and Duncan R 2014 Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): Age, petrogenesis and geodynamic implications; Contrib. Mineral. Petrol. 168 1–24.

    Article  Google Scholar 

  • Bandyopadhyay B K, Roy A and Huin A K 1995 Structure and tectonics of a part of Central Indian shield; Geol. Soc. India Memoir 31 433–467.

    Google Scholar 

  • Beard J S and Lofgren G E 1991 Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6, 9 kb; J. Petrol. 32 365–401.

    Article  Google Scholar 

  • Bhat M I, Le Fort P and Ahmad T 1994 Bafliaz volcanics, NW Himalaya: Origin of a bimodal, tholeiite and alkali basalt suite; Chem. Geol. 114 217–234.

    Article  Google Scholar 

  • Bhowmik S K, Pal T, Roy A and Pant N C 1999 Evidence for Pre-Grenvillian high-pressure granulite metamorphism from the northern margin of the Sausar mobile belt in central India; J. Geol. Soc. India 53 385–399.

    Google Scholar 

  • Bhowmik S K and Roy A 2003 Garnetiferous metabasites from the Sausar Mobile Belt: Petrology, P-T path and implications for the tectono-thermal evolution of the Central Indian Tectonic Zone; J. Petrol. 44 387–420.

    Article  Google Scholar 

  • Bonin B 2004 Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources: A review; Lithos 78 1–24.

    Article  Google Scholar 

  • Chaturvedi R K 2001 A review of the geology, tectonic features and tectonic-lithostratigraphy of Betul Belt; Geol. Surv. India Spec. Publ. 64 299–315.

    Google Scholar 

  • Chatterjee N and Bhattacharji S 2001 Origin of the felsic and basaltic dikes and flows in the Rajula–Palitana–Sihor area of the Deccan Traps, Saurashtra, India: A geochemical and geochronological study; Int. Geol. Rev. 43 1094–1116.

    Article  Google Scholar 

  • Chetty T R K 2017 The Central Indian Tectonic Zone, In: Proterozoic Orogens of India (ed.) Chetty T R K, Elsevier 4 211–265.

  • Cleverly R W, Betton P J and Bristow J W 1984 Geochemistry and petrogenesis of the Lebombo rhyolites; Geol. South Africa 13 171–194.

    Google Scholar 

  • Condie K C 2003 Incompatible element ratios in oceanic basalts and komatiites, tracking deep mantle sources and continental growth rates with time; Geochem. Geophys. Geosyst. 4 1005.

    Article  Google Scholar 

  • Condie K C 2005 High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes?; Lithos 79 491–504.

    Article  Google Scholar 

  • De Paolo D J 1981 Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallisation; Earth Planet. Sci. Lett. 53 189–202.

    Article  Google Scholar 

  • Elliott T, Plank T and Zindler A 1997 Element transport from slab to volcanic front at the Mariana arc; J. Geophys. Res. 102 14,991–15,019.

    Article  Google Scholar 

  • Fitton J G, Saunders A D, Larsen L M, Hardarson B S and Norry M J 1998 Volcanic rocks from the southeast Greenland Margin at 63°N: Composition, petrogenesis, and mantle sources; Proc. Ocean Drilling Program, Scientific Results 152.

  • Frost C D and Frost B R 1997 Reduced Rapakivi-type granites: The tholeiite connection; Geology 25 647–650.

    Article  Google Scholar 

  • Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J and Frost C D 2001 A geochemical classification for granitic rocks; J. Petrol. 42 2033–2048.

    Article  Google Scholar 

  • Frost C D and Frost B R 2010 On ferroan (A-type) granitoids: Their compositional variability and modes of origin; J. Petrol. 52(1) 39–53.

    Article  Google Scholar 

  • Fu C, Yan Z, Guo X, Niu M, Cao B, Wu Q, Li X and Wang Z 2019 Assembly and dispersal history of continental blocks within the Altun–Qilian–North Qaidam mountain belt, NW China; Int. Geol. Rev. 61(4) 424–447.

    Article  Google Scholar 

  • Gao P, Zheng Y F and Zhao Z F 2017 Triassic granites in South China: A geochemical perspective on their characteristics, petrogenesis, and tectonic significance; Earth Sci. Rev. 173 266–294.

    Article  Google Scholar 

  • Garland F, Hawkesworth C J and Mantovani M S M 1995 Description and petrogenesis of the Paraná rhyolites, southern Brazil; J. Petrol. 36 1193–1227.

    Article  Google Scholar 

  • Geist D, Howard K A and Larson P 1995 The generation of oceanic rhyolites by crystal fractionation: the basalt–rhyolite association at Volcán Alcedo, Galápagos Archipelago; J. Petrol. 36 965–982.

    Article  Google Scholar 

  • Ghosh B and Praveen M N 2007 Garnet–Gahnite–Staurolite relations and occurrence of Ecandrewsite from the Koparpani base metal sulfide prospect, Betul Belt, Central India; Neues Jahr. Fur Min. A Hand. 184 105–116.

    Google Scholar 

  • Ghosh B and Praveen M N 2008 Indicator minerals as guides to base metal sulfide mineralization in Betul Belt, central India; J. Earth Syst. Sci. 117(4) 521–536.

    Article  Google Scholar 

  • Ghosh B, Praveen M N and Shrivastava H S 2006 Gahnite chemistry from metamorphosed Zn–Pb–Cu sulphide occurrences of Betul Belt, Central India; Geol. Soc. India 67 17–20.

    Google Scholar 

  • Gorton M P and Schandl E S 2000 From continents to island arcs: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks; Canadian Mineral. 38 1065–1073.

  • Gurenko A A and Chaussidon M 1995 Enriched and depleted primitive melts in olivine from Icelandic tholeiites: Origin by continuous melting of a single mantle column; Geochim. Cosmochim. Acta 59 2905–2917.

    Article  Google Scholar 

  • Halder M, Paul D and Sensarma S 2021 Rhyolites in continental mafic Large Igneous Provinces: Petrology, geochemistry and petrogenesis; Geosci. Front. 12(1) 53–80.

    Article  Google Scholar 

  • Irvine T N and Baragar W R A 1971 A guide to the chemical classification of the common rocks; Canadian J. Earth Sci. 8 523–548.

    Article  Google Scholar 

  • Jain S C, Nair K K K and Yedekar D B 1995 Geology of the Son–Narmada–Tapti Lineament Zone in Central India Project Crumansonata; Geol. Surv. India Spec. Publ. 10 1–154.

    Google Scholar 

  • Jung C, Jung S, Hoffer E and Berndt J 2006 Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany; J. Petrol. 47 1637–1671.

    Article  Google Scholar 

  • Krishna A K, Murthy N N and Govil P K 2007 Multi-element analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry; Atomic Spectrosc. 28(6) 202–214.

    Google Scholar 

  • Kumar K V, Reddy M N and Leelanandam C 2006 Dynamic melting of the Precambrian mantle: Evidences from rare earth elements of the amphibolites from the Nellore-Khammam schist belt, South India; Contrib. Mineral. Petrol. 152 243–256.

    Article  Google Scholar 

  • Le Bas M J, Le Maitre R W, Streckeisen A and Zanettin B 1986 A chemical classification of volcanic rocks based on the total alkali-silica diagram; J. Petrol. 27(3) 745–750.

    Article  Google Scholar 

  • Li X H, Li Z X, Zhou H, Liu Y and Kinny P D 2002 U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia; Precamb. Res. 113 135–154.

    Article  Google Scholar 

  • Mahakud S P, Raut P K, Hansda C, Ramteke P F, Chakraborty C, Praveen M N and Sisodiya D S 2001 Sulphide mineralisation in the central part of Betul Belt around Ghisi–Muariya–Koparpani area, Betul district, Madhya Pradesh; Geol. Surv. India Spec. Publ. 64 377–385.

    Google Scholar 

  • Maniar P D and Piccoli P M 1989 Tectonic discrimination of granitoids; Geol. Soc. Am. Bull. 101 635–643.

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Khanna T C, Krishna A K and Satyanarayanan M 2008 Geochemical systematics of komatiite–tholeiite and adakite–arc basalt associations: The role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar Craton; Lithos 106 155–172.

    Article  Google Scholar 

  • Manikyamba C, Santosh M, Chandan Kumar B, Rambabu S, Tang L, Saha A, Khelen A C, Sohini G, Dhanakumar Singh Th and Subba Rao D V 2016 Zircon U–Pb geochronology, Lu–Hf isotope systematics, and geochemistry of bimodal volcanic rocks and associated granitoids from Kotri Belt, Central India: Implications for Neoarchean–Paleoproterozoic crustal growth; Gondwana Res. 38 313–333.

  • Miller J A and Harris C 2007 Petrogenesis of the Swaziland and Northern Natal Rhyolites of the Lebombo Rifted Volcanic Margin, South East Africa; J. Petrol. 48(1) 185–218.

    Article  Google Scholar 

  • Mullen E D 1983 MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis; Earth Planet. Sci. Lett. 62 53–62.

    Article  Google Scholar 

  • Moraes R, Fuck R A, Pimentel M M, Gioia S M C L and Figueiredo A M G 2003 Geochemistry and Sm–Nd isotopic characteristics of bimodal volcanic rocks of Juscelândia, Goiás, Brazil: Mesoproterozoic transition from continental rift to ocean basin; Precamb. Res. 125 317–336.

    Article  Google Scholar 

  • Naqvi S M and Rogers J W 1987 Precambrian Geology of India; Clarendon Press, Oxford University Press, New York, Oxford, viii + 223p.

  • Pearce J A, Harris N B W and Tindle A G 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks; J. Petrol. 25 956–983.

    Article  Google Scholar 

  • Pearce J A, Thirlwall M F, Ingram G, Murton B J, Arculus R J and Van der Laan S R 1992 Isotopic evidence for the origin of Boninites and related rocks drilled in the Izu-Bonin (Ogasawara) forearc, Leg 125; In: Proceedings of the Ocean Drilling Program (eds) Fryer P, Pearce J A and Stokking L, Sci. Result. 125 237–261.

  • Pearce J A, Stern R J, Bloomer S H and Fryer P 2005 Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components; Geochem. Geophys. Geosyst. 6 Q07006.

    Article  Google Scholar 

  • Pearce J A 1982 Trace element characteristics of lavas from destructive plate boundaries; John Wiley and Sons, United Kingdom (GBR), Chichester, pp. 525–548.

  • Pearce J A 1983 Role of the sub-continental lithosphere in magma genesis at active continental margins; In: Continental Basalts and Mantle Xenoliths (eds) Hawkesworth C J and Norry M J, Shiva Publications, Cheshire, UK, pp. 230–249.

  • Peccerillo A, Barberio M R, Yirgu G, Ayalew D, Barbieri M and Wu T W 2003 Relationship between mafic and peralkaline felsic magmatism in continental rift settings: A petrological, geochemical and isotopic study of the Gedemsa Volcano, Central Ethiopian Rift; J. Petrol. 44 2003–2032.

    Article  Google Scholar 

  • Pin C and Paquette J L 1997 A mantle-derived bimodal suite in the Hercynian belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brevenne metavolcanics, Massif Central (France); Contrib. Mineral. Petrol. 129 222–238.

    Article  Google Scholar 

  • Plank T 2005 Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents; J. Petrol. 46(5) 921–944.

    Article  Google Scholar 

  • Powell R 1984 Inversion of the assimilation and fractional crystallisation (AFC) equations: Characterization of contaminants from isotope and trace element relationships in volcanic suites; J. Geol. Soc. London 141(3) 447–452.

    Article  Google Scholar 

  • Praveen M N and Ghosh B 2007 Multiple origins of gahnite associated with the hydrothermal alteration from the Bhuyari base metal prospect of Proterozoic Betul Belt, Central India; J. Geol. Soc. India 69 233–241.

    Google Scholar 

  • Praveen M N, Ghosh B, Shrivastava Dora M L and Gaikwad L D 2007 Sulfide mineralization in Betul Belt: Classification and general characteristics; Geol. Surv. India Spec. Publ. 69 85–91.

    Google Scholar 

  • Radhakrishna B P and Naqvi S M 1986 Precambrian continental crust of India and its evolution; J. Geol. Soc. India 94 145–166.

    Google Scholar 

  • Raza M A, Shareef M, Badireddi V S S A N, Suryavanshi H, Baswani S R, Dora M L, Meshram T, Akhter P, Raghuram, Kumari S, Panda B, Saha S K, Maura L M S, Sarkar S S, John M M and Bai S R S 2020 Multiple sulfur sources for the volcanic-hosted massive sulfides in Betul Belt, Central India: Evidence from the sulfide ore chemistry and sulfur isotope geochemistry; Geochemistry 80(4).

  • Robinson J A C and Wood B J 1998 The depth of the spinel to garnet transition at the peridotite solidus; Earth Planet. Sci. Lett. 164(1–2) 277–284.

    Article  Google Scholar 

  • Rollinson H R 1993 Using Geochemical Data: Evaluation, Presentation, Interpretation; Longman Scientific and Technical, Harlow, 352p.

  • Roy A and Prasad H M 2001 Precambrian of Central India: A possible tectonic model; Geol. Surv. India Spec. Publ. 64 177–197.

    Google Scholar 

  • Roy A and Prasad H M 2003 Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implication in Rhodinian crustal assembly; J. Asian Earth Sci. 22 115–129.

    Article  Google Scholar 

  • Roy A, Chore S A, Viswakarma L L and Chakraborty K 2004a Geology and petrochemistry of Padhar mafic–ultramafic complex from Betul Belt: A study on arc-type magmatism in Central Indian Tectonic Zone; Geol. Surv. India Spec. Publ. 84 297–318.

    Google Scholar 

  • Roy A, Prasad H M and Chakraborty K 2004b Petrotectonic implications of granite from Tan Shear Zone in Central India: An example of acid magmatism in Proterozoic collisional orogen; Geol. Surv. India Spec. Publ. 84 273–296.

    Google Scholar 

  • Roy A and Chakraborty K 2008 Precambrian mafic–ultramafic magmatism in Central Indian Suture Zone; J. Geol. Soc. India 72 123–140.

    Google Scholar 

  • Rudnick R L and Fountain D M 1995 Nature and composition of the continental crust: A lower crustal perspective; Rev. Geophys. 33 267–309.

    Article  Google Scholar 

  • Rudnick R L and Gao S 2003 Composition of the continental crust; Treatise on Geochemistry 3 1–64.

    Google Scholar 

  • Saccani E 2015 A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th Nb and Ce Dy Yb systematics; Geosci. Front. 6(4) 481–501.

    Article  Google Scholar 

  • Satyanarayanan M, Balaram V, Sawant S S, Subramanyam K S V, Vamsi K G, Dasaram B and Manikyamba C 2018 Rapid determination of REEs, PGEs and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry; Atom. Spectrosc. 39(1) 1–15.

    Article  Google Scholar 

  • Schandl E S and Gorton M P 2002 Application of high field strength elements to discriminate tectonic settings in VMS environments; Econ. Geol. 97 629–642.

    Article  Google Scholar 

  • Schiano P, Monzier M, Eissen J P, Martin H and Koga K T 2010 Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes; Contrib. Mineral. Petrol. 160(2) 297–312.

    Article  Google Scholar 

  • Shaw D M 1979 Trace element melting models; Phys. Chem. Earth 11 577–586.

    Article  Google Scholar 

  • Shellnutt J G, Bhat G M, Wang K L, Brookfield M E, Dostal J and Jahn B M 2012 Origin of the silicic volcanic rocks of the Early Permian Panjal Traps, Kashmir, India; Chem. Geol. 334 154–170.

    Article  Google Scholar 

  • Shellnutt J G, Hari K R, Liao A C Y, Denyszyn S W and Vishwakarma N 2018 A 1.88 Ga giant radiating mafic dyke swarm across southern India and Western Australia; Precamb. Res. 308 58–74.

    Article  Google Scholar 

  • Shinjo R, Chung S L, Kato Y and Kimura M 1999 Geochemical and Sr–Nd isotopic characteristics of volcanic rocks from the OkinawaTrough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin; J. Geophys. Res.: Solid Earth 104(B5) 10,591–10,608.

  • Singh A K and Singh B 2016 Petrogenetic evolution of the felsic and mafic volcanic suite in the Siang window of Eastern Himalaya, Northeast India; Geosci. Front. 3(5) 613–634.

    Article  Google Scholar 

  • Sisson T W, Ratajeski K, Hankins W B and Glazner A F 2005 Voluminous granitic magmas from common basaltic sources; Contrib. Mineral. Petrol. 148 635–661.

    Article  Google Scholar 

  • Sun S S and Mc Donough W F 1989 Chemical and isotopic systematics of oceanic basalts implications for mantle composition and processes; In: Magmatism in the ocean basins (eds) Saunders A D, Norry M J, Geol. Soc. London Spec. Publ. 42 313–345.

  • Tamura Y and Tatsumi Y 2002 Remelting and andesitic crust as a possible origin for rhyolitic magma in oceanic arcs: An example from the Izu-Bonin arc; J. Petrol. 43 1029–1047.

    Article  Google Scholar 

  • Thurston P C and Fryer B J 1983 The geochemistry of repetitive cyclical volcanism from basalt through rhyolite in the uchi-confederation greenstone belt, Canada; Contrib. Mineral. Petrol. 83(3) 204–226.

    Article  Google Scholar 

  • Turner J S 1980 A fluid-dynamical model of differentiation and layering in magma chambers; Nature 285 213–215.

    Article  Google Scholar 

  • Wang Y, Qian Q, Liu L and Zhang Q 2000 Major geochemical characteristics of bimodal volcanic rocks in different geochemical environments; Acta Petrologica Sinica 16 169–173.

    Google Scholar 

  • Wang K, Plank T, Walker J D and Smith E I 2002 A mantle melting profile across the Basin and Range, SW USA; J. Geophys. Res. 107, https://doi.org/10.1029/2001JB000209.

  • Wang Q, Chung S L, Li X H, Wyman D, Li Z X, Sun W D, Qiu H N, Liu Y S and Zhu Y T 2012 Crustal melting and flow beneath northern Tibet: Evidence from Mid-Miocene to Quaternary strongly peraluminous rhyolites in the Southern Kunlun Range; J. Petrol. 53 2523–2566.

    Article  Google Scholar 

  • Wang X, Peng P, Wang C and Yang S 2016 Petrogenesis of the 2115 Ma Haicheng mafic sills from the Eastern North China Craton: Implications for an intra-continental rifting; Gondwana Res. 39 347–364.

    Article  Google Scholar 

  • Wang J, Wang Q, Zhang C, Dan W, Qi Y, Zhang X Z and Xia X P 2018 Late Permian bimodal volcanic rocks in the northern Qiangtang Terrane, central Tibet: Evidence for interaction between the Emeishan plume and the Paleo-Tethyan subduction system; J. Geophys. Res.: Solid Earth 123 6540–6561.

  • Watson E B and Harrison T M 1983 Zircon saturation revisited – Temperature and composition effects in a variety of crustal magma types; Earth Planet. Sci. Lett. 64(2) 295–304.

    Article  Google Scholar 

  • Whalen J B, Currie K L and Chappell B W 1987 A-type granites – Geochemical characteristics, discrimination and petrogenesis; Contrib. Mineral. Petrol. 95(4) 407–419.

    Article  Google Scholar 

  • White W M and Klein E M 2014 Composition of the oceanic crust; Treatise on Geochemistry 4 457–496.

    Article  Google Scholar 

  • Winchester J A and Floyd P A 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements; Chem. Geol. 20(4) 325–343.

    Article  Google Scholar 

  • Woodhead J, Eggins S and Gamble J 1993 High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge; Earth Planet. Sci. Lett. 114(4) 491–504.

    Article  Google Scholar 

  • Woodhead J D, Eggins S M and Johnson R W 1998 Magma genesis in the New Britain Island Arc: Further insights into melting and mass transfer processes; J. Petrol. 39(9) 1641–1668.

    Article  Google Scholar 

  • Wilson M (ed.) 1989 Igneous Petrogenesis; Dordrecht: Springer Netherlands.

    Book  Google Scholar 

  • Xu Y G, Chung S L, Jahn B M and Wu G Y 2001 Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China; Lithos 58(3–4) 145–168.

    Article  Google Scholar 

  • Yang J H, Sun J F, Chen F K, Wilde S A and Wu F Y 2007 Sources and petrogenesis of Late Triassic dolerite dikes in the Liaoning Peninsula: Implications for post-collisional lithosphere thinning of the Eastern North China Craton; J. Petrol. 48 1973–1997.

    Article  Google Scholar 

  • Yedekar D B, Jain S C and Nair K K 1990 The Central Indian Collision suture, Precambrian Central India; Geol. Surv. India Spec. Publ. 28 1–27.

    Google Scholar 

  • Yousuf I, Rao D V S, Balakrishnan S and Ahmad T 2019 Geochemistry and petrogenesis of acidic volcanic from Betul-Chhindwara Belt, central Indian tectonic zone (CITZ), central India; J. Earth Syst. Sci. 128 227.

    Article  Google Scholar 

  • Zhang X H, Zhang H, Tang Y, Wilde S A and Hu Z 2008 Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt; Chem. Geol. 249 262–281.

    Article  Google Scholar 

  • Zhang Y, Yang J H, Chen J Y, Wang H and Xiang Y X 2017a Petrogenesis of Jurassic tungsten-bearing granites in the Nanling Range, South China: Evidence from whole-rock geochemistry and zircon U-Pb and Hf–O isotopes; Lithos 278–281 166–180.

    Article  Google Scholar 

  • Zhang Y, Yuan C, Long X, Sun M, Huang Z, Du L and Wang X 2017b Carboniferous bimodal volcanic rocks in the Eastern Tianshan, NW China: Evidence for arc rifting; Gondwana Res. 43 92–106.

    Article  Google Scholar 

  • Zhi X, Song Y, Frey F A, Feng J and Zhai M 1990 Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkaline and tholeiitic basalt; Chem. Geol. 88 1–33.

    Article  Google Scholar 

  • Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Wang Q, Ji W H, Dong G C, Sui Q L, Liu Y S, Yuan H L and Mo X X 2012 Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin; Chem. Geol. 328 290–308.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-NGRI, for the support and encouragement. CSIR has funded this work through SHORE project number PSC0205 under the 12th five-year plan. The first author thanks the Department of Science and Technology (DST-INSPIRE) (IF170279), New Delhi, India, for financial support through Inspire Fellowship. Dr D V Subba Rao is sincerely thanked for guidance and support. Drs A K Krishna and S S Sawant are thanked for their support in geochemical analysis.

Author information

Authors and Affiliations

Authors

Contributions

Sethuraman Gomathi Abhirami: Conceptualization, writing – original draft, investigation, sampling and processing data, methodology. Manavalan Satyanarayanan: Conceptualization, writing – review and editing, methodology.

Corresponding author

Correspondence to Sethuraman Gomathi Abhirami.

Additional information

Communicated by Ramananda Chakrabarti

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 2575 KB)

Supplementary file2 (XLSX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhirami, S.G., Satyanarayanan, M. Bimodal volcanism in Betul Fold Belt, central India: Implications on petrogenesis. J Earth Syst Sci 132, 102 (2023). https://doi.org/10.1007/s12040-023-02112-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02112-2

Keywords

Navigation