Skip to main content
Log in

Provenance, weathering, and tectonic setting of the Yoyo, Kribi, and Campo beach sediments in the southern Gulf of Guinea, SW Cameroon

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The coastal and landward sectors of the southern Gulf of Guinea are dominated by igneous, sedimentary, and metamorphic rocks of Precambrian and Paleozoic ages. However, the lithology and extent of the basement rocks hidden under thick lateritic covers are not well documented. To establish more precisely the provenance, paleoweathering, and tectonic setting, the mineralogy and chemical composition of beach sediments were examined. Beach sediments are fine to medium-grained and compositionally matured, revealed by the high SiO2/Al2O3 ratio and Zircon–Tourmaline–Rutile (ZTR) index values. Th/Sc vs. Zr/Sc bivariate and Al2O3–TiO2–Zr triangular diagrams suggested that the sediments were recycled. Ternary diagrams (A–CN–K and (A–K)–C–N) and chemical indices such as the chemical index of alteration (CIA), the plagioclase index of alteration (PIA), and the chemical index of weathering (CIW) indicated that the beach sediments were undergone moderate weathering. Numerous provenance discrimination plots based on TiO2, Al2O3, Zr, Th, Co, La, Sc, V, and Ni, and chondrite normalized rare earth element (REE) patterns suggested a felsic provenance for the beach sediments. Quartzose sedimentary provenance is also inferred through major element concentrations, reflecting the influence of abundant metasediments from the Nyong Paleoproterozoic, Pan-African Neoproterozoic, and Douala–Kribi–Campo basins. Paleotectonic analyses indicated rift and passive margin settings, which may be linked to the pre-Eburnean rifting (older than ca. 2500 Ma), the opening of Nyong intracontinental basins, and the development of a passive margin setting on the Congo craton’s northern border.

Research highlights

  • Yoyo, Kribi, and Campo beach sediments are quartz rich.

  • The beach sediments investigated underwent a moderate degree of weathering.

  • The sediments were derived from the Precambrian metamorphic and Paleozoic sedimentary rocks.

  • Geochemical data indicated the combination of rift and passive margin settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Ali S, Stattegger K, Garbe-Schöngerg D, Frank M, Kraft S and Kuhnt W 2014 The provenance of Cretaceous to Quaternary sediments in the Tarfaya Basin, SW Morocco: Evidence from trace element geochemistry and radiogenic Nd–Sr isotope; J. Afr. Earth Sci. 90 64–76.

    Article  Google Scholar 

  • Armstrong-Altrin J S 2020 Detrital zircon U–Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: A new insight on palaeoenvironment; J. Palaeogeogr. 9(4) 28.

    Article  Google Scholar 

  • Armstrong-Altrin J S and Machain-Castillo M L 2016 Mineralogy, geochemistry, and radiocarbon ages of deep-sea sediments from the Gulf of Mexico, Mexico; J. South Am. Earth Sci. 71 182–200.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J, Carranza-Edwards A, Garcia D, Eby N, Balaram V and Cruz-Ortiz N L 2012 Geochemistry of beach sands along the Western Gulf of Mexico, Mexico: Implication for provenance; Chem. Erde 72 345–362.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Lee Y I, Balaram V, Cruz-Martinez A and Avila-Ramirez G 2013 Geochemistry of Jurassic and Upper Cretaceous shales from the Molango Region, Hildago, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting; C.R. Geosci. 345(4) 185–202, https://doi.org/10.1016/jcrt.2013.03.004.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Nagarajan R, Balaram V and Natalhy-Pineda O 2015 Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: Constraints on provenance and tectonic setting; J. South Am. Earth Sci. 64 199–216.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J and Trejo-Ramírez E 2016 Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: Implications for palaeoweathering, provenance and tectonic setting; Geol. J. 52(4), https://doi.org/10.1002/gj.2792.

  • Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J and Trejo-Ramírez E 2017 Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: Implications for palaeoweathering, provenance, and tectonic setting; Geol. J. 52(4) 559–582.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Alfonso V, Botello A V, Villanueva S F and Soto L A 2019 Geochemistry of surface sediments from the northwestern Gulf of Mexico: Implications for provenance and heavy metal contamination; Geol. Q. 63(3) 522–538.

    Google Scholar 

  • Armstrong-Altrin J S, Madhavaraju J, Vega-Bautista F, Ramos-Vázquez M A, Pérez-Alvarado B Y, Kasper-Zubillaga J J and Ekoa Bessa A Z 2021 Mineralogy and geochemistry of Tecolutla and Coatzacoalcos beach sediments, SW Gulf of Mexico; Appl. Geochem. 134 105103.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Ramos-Vázquez M A, Madhavaraju J, Marca-Castillo M E, Machain-Castillo M L and Márquez-Garcia A Z 2022 Geochemistry of marine sediments adjacent to the Los Tuxtlas Volcanic Complex, Gulf of Mexico: Constraints on weathering and provenance; Appl. Geochem. 141 105321.

    Article  Google Scholar 

  • Asadi S, Moore F and Keshavarzi B 2013 The nature and provenance of Golestan loess deposits in northeast Iran; Geol. J. 48 646–660.

    Article  Google Scholar 

  • Ayala-Pérez M P, Armstrong-Altrin J S and Machain-Castillo M L 2021 Heavy metal contamination and provenance of sediments recovered at the Grijalva River delta, southern Gulf of Mexico; J. Earth Syst. Sci. 130 88.

    Article  Google Scholar 

  • Bakkiaraj D, Nagendra R, Nagarajan R and Armstrong-Altrin J S 2010 Geochemistry of sandstones from the upper Cretaceous Sillakkudi Formation, Cauvery Basin, southern India: Implication for provenance; J. Geol. Soc. India 76 453–467.

    Article  Google Scholar 

  • Banerji U S, Dubey C P, Goswami V and Joshi K B 2022 Geochemical indicators in provenance estimation; In: Armstrong-Altrin J A, Pandarinath K and Verma S (eds.), Geochemical Treasures and Petrogenetic Processes, pp. 95–121.

  • Barbey P, Macaudière J and Nzenti J P 1990 High-pressure melting of metapelites: Evidence from the migmatites of Yaoundé; J. Petrol. 31(2) 401–427.

    Article  Google Scholar 

  • Bhatia M R 1983 Plate tectonics and geochemical composition of sandstone; J. Geol. 91 611–627.

    Article  Google Scholar 

  • Bhatia M R and Crook K A 1986 Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins; Contrib. Mineral. Petrol. 92 181–193.

    Article  Google Scholar 

  • Bhuiyan M A H, Rahman J J, Dampare S B and Suzuki S 2011 Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra–Jamuna River, Bangladesh: Inference from geochemistry; Geochem. Expl. 111 113–137.

    Article  Google Scholar 

  • Bracciali L, Marroni M, Pandolfi L and Rocchi S 2007 Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): From source area to configuration of margins; Geol. Soc. Am. Spec. Paper 420 73–93.

    Google Scholar 

  • Carranza-Edwards A, Centeno-García E, Rosales-Hoz L and Cruz R L-S 2001 Provenance of beach gray sands from western México; J. Am. Earth Sci. 14(3) 291–305.

    Article  Google Scholar 

  • Carranza-Edwards A, Kasper-Zubillaga J J, Martinez-Serrano R G, Cabrera-Ramirez M, Rosales-Hoz L, Alatorre Mendieta M A, Márquez-Garcia A Z and Cruz R L-S 2018 Provenance inferred through modern beach sands from the Gulf of Tehuantepec, Mexico; Geol. J. 54(1) 552–563.

    Article  Google Scholar 

  • Chen M, Sun M, Cai K, Buslov M M, Zhao G and Rubanova E S 2014 Geochemical study of the Cambrian–Ordovician metasedimentary rocks from the northern Altai–Mongolian terrane, northwestern Central Asian orogenic belt: Implications on the provenance and tectonic setting; J. Asian Earth Sci. 96 69–83.

    Article  Google Scholar 

  • Chen L, Guo F, Steel R J and Li Y 2016 Petrography and geochemistry of the late Cretaceous redbeds in the Gan-Hang Belt, southeast China: Implications for provenance, source weathering, and tectonic setting; Int. Geol. Rev. 58 1196–1214.

    Article  Google Scholar 

  • Chougong Tchatchouang D, Ekoa Bessa A Z, Ngueutchoua G, Yongue Fouateu R, Ntyam S C and Armstrong-Altrin J S 2021 Mineralogy and geochemistry of Lobé River sediments, SW Cameroon: Implications for provenance and weathering; J. Afr. Earth Sci. 183 104320, https://doi.org/10.1016/j.jafrearsci.2021.104320.

    Article  Google Scholar 

  • Condie K C 1993 Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales; Chem. Geol. 104 1–37.

    Article  Google Scholar 

  • Cox R, Lowe D R and Cullers R L 1995 The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States; Geochim. Cosmochim. Acta 59 2919–2940.

    Article  Google Scholar 

  • Cullers R L 1994 The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, Colorado, USA; Chem. Geol. 113 327–343.

    Article  Google Scholar 

  • Cullers R L 2000 The geochemistry of shales, siltstones, and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies; Lithos 51 181–203.

    Article  Google Scholar 

  • Cullers R L 2002 Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA; Chem. Geol. 191 305–327.

    Article  Google Scholar 

  • Cullers R L and Podkovyrov V N 2000 Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling; Precamb. Res. 104(1–2) 77–93.

    Article  Google Scholar 

  • Cullers R L, Basu A and Suttner L J 1988 Geochemical signature of provenance in sand-size material in soils and stream sediments near Tobacco Root batholith, Montana, USA; Chem. Geol. 70 335–338.

    Article  Google Scholar 

  • de Wit M J, Stankiewicz J and Reeves C 2008 Restoring Pan-African–Brasiliano connections: More Gondwana control, less Trans-Atlantic corruption; Geol. Soc. London, Spec. Publ. 294 399–412, https://doi.org/10.1144/SP294.20.

    Article  Google Scholar 

  • Dumort J C 1968 Geological Map of Cameroon at Scale 1/500000, West Douala Sheet + Explanatory Note; Mines and Geology Branch, 23p.

  • Ekoa Bessa A Z, Ngueutchoua G, Kwewouo Janpou A, El-Amier Y A, Njike Njome M N O-A, Kankeu Kayou U R, Bisse S B, Ngo Mapuna E C and Armstrong-Altrin J S 2020 Heavy metal contamination and its ecological risks in the beach sediments along the Atlantic Ocean (Limbe coastal fringes, Cameroon); Earth Syst. Environ. 5 433–444.

    Article  Google Scholar 

  • Ekoa Bessa A Z, Ambassa Bela V, Ngueutchoua G, El-Amier Y A, Aonsi Kamani F, Ngueudong Zebaze L, Kamguem Fotso C A, Vanisa Njimanu Njong V, Ghomsi F, Valipour M and Armstrong-Altrin J S 2021 Characteristics and source identification of environmental trace metals in beach sediments along the littoral zone of Cameroon; Earth Syst. Environ. 6(1), https://doi.org/10.1007/s41748-021-00279-6.

  • El-Bialy M Z 2013 Geochemistry of the Neoproterozoic metasediments of Malhaq and Um Zariq Formations, Kid metamorphic complex, Sinai, Egypt: Implications for source-area weathering, provenance, recycling, and depositional tectonic setting; Lithos 175 68–85.

    Article  Google Scholar 

  • Fedo C M, Nesbitt H W and Young G M 1995 Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance; Geology 23 921–924.

    Article  Google Scholar 

  • Feng R and Kerrich R 1990 Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implication for provenance and tectonic setting; Geochim. Cosmochim. Acta 53 277–303.

    Google Scholar 

  • Feybesse J L, Johan V, Triboulet C, Guerrot C, Mayaga-Mokolo F, Bouchot V and Eko N’Dong J 1998 The West Central African belt: A model of 25–20 Ga accretion and two-phase orogenic evolution; Precamb. Res. 87 161–216.

    Article  Google Scholar 

  • Floyd P A and Leveridge B E 1987 Tectonic environments of the Devonian Gramscatho Basin South Cornwall: Framework mode and geochemical evidence from turbidite sandstones; J. Geol. Soc. London 144 531–542.

    Article  Google Scholar 

  • Folk R L 1966 A review of grain-size parameters; Sedimentology 6(2) 73–93, https://doi.org/10.1111/j.1365-3091.1966.tb01572.x.

    Article  Google Scholar 

  • Folk R L 1980 Petrology of sedimentary rocks; Hemphill Publishing, Austin, Texas.

    Google Scholar 

  • Folk R L and Ward W C 1957 Brazos River bar: A study in the significance of grain size parameters; J. Sedim. Petrol. 27 3–26.

    Article  Google Scholar 

  • Gaillardet J, Dupré B and Allègre C J 1999 Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer?; Geochim. Cosmochim. Acta 63 4037–4051.

    Article  Google Scholar 

  • Ganno S, Njiosseu Tanko E L, Kouankap Nono G D, Djoukouo Soh A, Moudio C, Ngnotué T and Nzenti J P 2017 A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrography and geochemistry; Ore Geol. Rev. 80 860–875.

    Article  Google Scholar 

  • Ganno S, Tsozué D, Kouankap Nono D, Tchouatcha M S, Ngnotué T, Gamgne Takam R and Nzenti J P 2018 Geochemical constraints on the origin of banded iron formation-hosted iron ore from the Archean Ntem complex (Congo craton) in the Meyomessi area, southern Cameroon; Res. Geol. 68(3), https://doi.org/10.1111/rge12172.

  • Garcia D, Fonteilles M and Moutte J 1994 Sedimentary fractionations between Al, Ti, and Zr, and the genesis of strongly peraluminous granites; J. Geol. 102 411–422.

    Article  Google Scholar 

  • Garzanti E and Ando S 2007 Heavy mineral concentration in modern sands: Implications for provenance interpretation; Dev. Sedimentol. 58 517–545.

    Article  Google Scholar 

  • Garzanti E, Ando S, France-Lanord C, Galy V, Censi P and Vignola P 2011 Mineralogical and chemical variability of fluvial sediments. 2: Suspended-load silt (Ganga–Brahmaputra, Bangladesh); Earth Planet. Sci. Lett. 302 107–120.

    Article  Google Scholar 

  • Harnois L 1988 The CIW index: A new chemical index of weathering; Sed. Geol. 55 319–322.

    Article  Google Scholar 

  • Hayashi K I, Fujisawa H, Holland H D and Ohmoto H 1997 Geochemistry of ~19 Ga sedimentary rocks from northeastern Labrador, Canada; Geochim. Cosmochim. Acta 61 4115–4137.

    Article  Google Scholar 

  • Herron M M 1988 Geochemical classification of terrigenous sands and shales from core or log data; J. Sedim. Petrol. 58 820–829.

    Google Scholar 

  • Hourcq V 1955 Les Recherches Françaises de Pétrole en Afrique Noire (Cameroun, Afrique Equatoriale Française, Madagascar); IFP, Centre d’Etudes Supérieures de Prospection et d’Exploitation des Gisements.

  • Hubert J F 1962 A zircon–tourmaline–rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstone; J. Sedim. Petrol. 32 440–450.

    Google Scholar 

  • Jarvis K E 1988 Inductively coupled plasma mass spectrometry: A new technique for the rapid or ultra-trace level determination of the rare earth elements in geological materials; Geol. Soc. Am. Bull. 87 725–737.

    Google Scholar 

  • Kassi A M, Grigsby J D, Khan A S and Kasi A K 2015 Sandstone petrology and geochemistry of the Oligocene–Early Miocene Panjgur Formation, Makran accretionary wedge, southwest Pakistan: Implications for provenance, weathering and tectonic setting; J. Asian Earth Sci. 105 192–207.

    Article  Google Scholar 

  • Kontchipe Ngagoum Y S, Temgo Sopie F, Ngueutchoua G, Sonfack N A, Nkouathio D G, Tchatchueng R, Nguemo Kenfack G R and Njanko T 2021 Mineralogy and geochemistry study of the Nyong River sediments, SW Cameroon: Implications for provenance, weathering, and tectonic setting; Arab. J. Geosci., https://doi.org/10.1007/s12517-021-07145-9.

    Article  Google Scholar 

  • Kröner A and Stern R J 2004 Regional Geology: Pan-African Orogenic cycle; In: Encyclopedia of Geology (eds) Selley R C, Cocks L R M and Plimer I R, Elsevier, Amsterdam, pp. 1–12.

    Google Scholar 

  • Kundu O M, Minyem D, Tamen J, Nkoumbou C, Fuh C G and Tchakounte N J 2022 Petrology of ophiolites of Memel, Nsime-Kelle and Mapan (Yaounde group): Evidence of the geodynamic evolution of the Pan-African orogeny in South Cameroon; J. Afr. Earth Sci. 191 104537, https://doi.org/10.1016/j.jafrearsci.2022.104537.

    Article  Google Scholar 

  • Kwékam M, Liégeois J P, Njonfang E, Affaton P, Hartmann G and Tchoua F 2010 Nature, origin and significance of the Fomopéa Pan-African high-K calc-alkaline plutonic complex in the Central African fold belt (Cameroon); J. Afr. Earth Sci. 57(1) 79–95.

    Article  Google Scholar 

  • Kwewouo Janpou A, Ngueutchoua G, Ekoa Bessa A Z, Armstrong-Altrin J S, Kankeu Kayou U R, Njike Njome Mbella Nguetnga O-A, Njanko T, Ambassa Bela V, Kanouo Tiotsop M S and Tankou J G 2022 Composition, weathering, and provenance of beach sands adjacent to volcanic rocks in the northern Gulf of Guinea SW Cameroon; J. Afr. Earth Sci. 188 104473, https://doi.org/10.1016/j.jafrearsci.2022.104473.

    Article  Google Scholar 

  • Lassere M 1961 Etude géologique de la partie orientale de l’Adamaoua (Cameroun central) et les principales sources minéralisées de l’Adamaoua; Bull. de la Direction des Mines et de la Géologie du Cameroun (4).

  • Lawrence S R, Munday S and Bray R 2002 Regional Geology and Geophysics of the Eastern Gulf of Guinea (Niger Delta to Rio Muni); Lead Edge 21(11) 1112–1117.

    Article  Google Scholar 

  • Le Pichon X and Hayes D E 1971 Marginal offset, fracture zones and early opening of the South Atlantic; J. Geophys. Res. 76 6294–6308.

    Article  Google Scholar 

  • Li B, Zhuang X, Liu X, Wu C, Zhou J and Ma X 2016 Mineralogical and geochemical composition of Middle Permian Lucaogou Formation in the southern Junggar Basin, China: Implications for paleoenvironment, provenance, and tectonic setting; Arab. J. Geosci. 9 174, https://doi.org/10.1007/s12517-015-2154-3.

    Article  Google Scholar 

  • Madhavaraju J 2015 Geochemistry of Late Cretaceous sedimentary rocks of the Cauvery Basin, south India: Constraints on paleoweathering, provenance, and End Cretaceous environments; Chemostratigraphy 2015 185–214, https://doi.org/10.1016/B978-0-12-419968-2.00008-X.

    Article  Google Scholar 

  • Madhavaraju J, Milu Tom, Yong I L Lee, Balaram V, Ramasamy S, Carranza-Edwards A and Ramachandran A 2016 Provenance and tectonic setting of sands from Puerto Peñasco Desemboque, and Bahia Kino beaches, Gulf of California, Sonora, México; J. South Am. Earth Sci. 71 262–275.

    Article  Google Scholar 

  • Maslov J M, Podkovyrov V N, Mizens G A, Noshkin A D, Fazliakhmetov A M, Malinovsky A I, Khudoley A K, Kovota L N, Kuptsova A V, Gareev E Z and Zainullin R I 2016 Tectonic setting discrimination diagrams for terrigenous rocks: A comparison; Geochem. Int. 54(7) 569–583.

    Article  Google Scholar 

  • McDonough W F and Sun S S 1995 The Composition of the Earth; Chem. Geol. 120 223–253.

    Article  Google Scholar 

  • McLennan S M 1989 Rare earth elements in sedimentary rocks: Influences of provenance and sedimentary processes; Rev. Mineral. 21 169–200.

    Google Scholar 

  • McLennan S M 1993 Weathering and global denudation; J. Geol. 101 295–303.

    Article  Google Scholar 

  • McLennan S M 2001 Relationships between the trace element composition of sedimentary rocks and upper continental crust; Geochem. Geophys. Geosyst., https://doi.org/10.1029/2000GC000109.

    Article  Google Scholar 

  • McLennan S M and Taylor S R 1991 Sedimentary rocks and crustal evolution: Tectonic setting and secular trends; J. Geol. 99 1–21.

    Article  Google Scholar 

  • Mendieta-Lora M, Mejía-Ledesma R O, Kasper-Zubillaga J J, Arellano-Torres E and Álvarez Sánchez L F 2018 Mineralogy and geochemical implications of weathering rates in coastal dunes and beach sands close to a volcanic rock source in the western Gulf of Mexico, Mexico; Chem. Erde, https://doi.org/10.1016/j.chemer.2018.06.004.

  • Münsell 1975 Münsell soil color charts Baltimore MD USA: Münsell Color Company Inc, Mcbeth Division of Kollmorgen Corporation.

  • Nagarajan R, Roy P D, Kessler F L, Jong J and Dayong V 2017 An integrated study of geochemistry and mineralogy of the Upper Tukau Formation, Borneo Island (East Malaysia): Sediment provenance, depositional setting and tectonic implications; J. Asian Earth Sci. 143 77–94.

    Article  Google Scholar 

  • Nanga Bineli M T, Onana V L, Noa Tang S D, Bikoy Y R and Ekodeck G E 2021 Mineralogy and geochemistry of sands of the lower course of the Sanaga River, Cameroon: Implications for weathering, provenance, and tectonic setting; Acta Geochim., https://doi.org/10.1007/s11631-020-00437-z.

    Article  Google Scholar 

  • Nayak G N and Singh K T 2022 Source, processes, and depositional environments of estuarine mudflat core sediments, central western coast of India; In: Armstrong-Altrin J A, Pandarinath K and Verma S (eds.), Geochemical Treasures and Petrogenetic Processes, pp. 123–152.

  • Ndjigui P-D, Onana V L, Sababa E and Bayiga E C 2018 Mineralogy and geochemistry of the Lokoundje alluvial clays from the Kribi deposits, Cameroonian Atlantic coast: Implications for their origin and depositional environment; J. Afr. Earth Sci. 143 102–117.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1982 Early Proterozoic climates and plate motions inferred from major element chemistry of lutites; Nature 299 715–717.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1984 Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration; Geochim. Cosmochim. Acta 48 1523–1534.

    Article  Google Scholar 

  • Ngnotue T, Nzenti J P and Tchoua F M 2000 The Ntui–Betamba high-grade gneisses: A northward extension of Pan-African Yaoundé gneisses in Cameroon; J. Afr. Earth Sci. 2 369–381.

    Article  Google Scholar 

  • Ngueutchoua G and Giresse P 2010 Sand bodies and incised valleys within the late quaternary Sanaga–Nyong delta complex on the middle continental shelf of Cameroon; Mar. Pet. Geol. 27 2173–2188.

    Article  Google Scholar 

  • Ngueutchoua G, Eyong T J, Ekoa Bessa A Z, Azanji Agheenwi Z B, Emane Maschouer A, Sobdjou Kemteu C, Lontchi Dzoti Y, Touda Hamadou, Ongbassouek Baboule B-M and Kenfack Nguemo G R 2019 Provenance and depositional history of Mesozoic sediments from the Mamfe basin and Douala sub-basin (SW Cameroon) unraveled by geochemical analysis; J. Afr. Earth Sci., https://doi.org/10.1016/j.jafrearsci.2019.103550.

    Article  Google Scholar 

  • Njanko T, Nedelec A and Affaton P 2006 Synkinematic high-K calc-alkaline plutons associated with the Pan-African Central Cameroon shear zone (W-Tibati area): Petrology and geodynamic significance; J. Afr. Earth Sci. 44 494–510, https://doi.org/10.1016/j.jafrearsci.2005.11016.

    Article  Google Scholar 

  • Njiké Ngaha P R 1984 Contribution to the geological, stratigraphic and structural study of the edge of the Atlantic basin of Cameroon; Thesis 3rd Cycle, University of Yaoundé, Cameroon, 131p.

  • Nouvelot J F 1972 Le régime des transports solides dans divers cours d’eau du Cameroun de 1969 à 1971; Cahier office Recherche Scientifique et Technique Outre-Mer, Sér. Hydrologie IX(1) 4773.

  • Nzenti J P, Barbey P, Jegouzo P and Moreau C 1984 Un nouvel exemple de ceinture granulitique dans une chaine proterozique de collision: les migmatites de Yaoundé au Cameroun; C.R. Acad. Sci. 299 1197–1199.

    Google Scholar 

  • Nzenti J P, Barbey P, Macaudière J and Soba D 1988 Origin and evolution of late Precambrian high-grade Yaoundé gneisses (Cameroon); Precamb. Res. 38 91–109.

    Article  Google Scholar 

  • Olivry J C 1977 Transports solides en suspension au Cameroun; Int. Ass. Hydrol. Sci. 122 134–141.

    Google Scholar 

  • Olivry J C 1986 Fleuves et rivières du Cameroun; Collection Monographies Hydrologiques ORSTOM No. 9, Paris, 733p.

  • Owona S, Mbola Ndzana S P, Mvondo Ondoa J, Nsangou Ngapna M, Nkabsaah C, Ratschbacher L and Ekodeck G E 2012 Geological control of geomorphologic units in the Southwest (SW) Cameroon (Central Africa); J. Geol. Mining Res. 4(7) 125–167.

    Google Scholar 

  • Penaye J, Toteu S F, Van Schmus W R and Nzenti J P 1993 Données géochronologiques préliminaires (U–Pb et Sm–Nd) sur la série de Yaoundé: âge du métamorphisme granulitique de la zone mobile panafricaine à proximité du craton du Congo; C.R. Acad. Sci. 317 789–797.

    Google Scholar 

  • Penaye J, Toteu S F, Tchameni R, Van Schmus W R, Tchakounte J, Ganwa A, Minyem D and Nsifa E N 2004 The 21 Ga West central African Belt in Cameroon: Extension and evolution; J. Afr. Earth Sci. 39 159–164.

    Article  Google Scholar 

  • Pouclet A, Tchameni R, Mezger K, Vidal M, Nsifa N E and Shang C K 2007 Archaean crustal accretion at the northern border of the Congo craton (South Cameroon), the charnockite–TTG link; Bull. Soc. Géol. Fr. 178 331–342.

    Article  Google Scholar 

  • Ramachandran A, Madhavaraju J, Ramasamy S, Lee Y I, Rao S, Chawngthu D L and Velmurugan K 2016 Geochemistry of Proterozoic clastic rocks of the Kerur Formation of Kaladgi-Badami Basin, North Karnataka, South India: Implications for paleoweathering and provenance; Turkish J. Earth Sci. 25 126–144.

    Article  Google Scholar 

  • Ramírez-Montoya E, Madhavaraju J, González-León C M, Armstrong-Altrin J S and Monreal R 2022 Detrital zircon Geochemistry in the Morita Formation, Northern Sonora, Mexico: Implications for Origin and Source Rock Type; In: Armstrong-Altrin J A, Pandarinath K and Verma S (eds.), Geochemical Treasures and Petrogenetic Processes, pp. 315–350.

  • Ramos-Vázquez M A and Armstrong-Altrin J S 2019 Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico; Mar. Petrol. Geol. 110 650–675.

    Article  Google Scholar 

  • Ramos-Vázquez M A and Armstrong-Altrin J S 2021 Provenance of sediments from Barra del Tordo and Tesoro beaches, Tamaulipas State, northwestern Gulf of Mexico; J. Palaeogeogr. 10(20) 1–17.

    Google Scholar 

  • Rao W, Tan H, Jiang S and Chen J 2011 Trace element and REE geochemistry of fine- and coarse-grained sands in the Ordos deserts and links with sediments in surrounding areas; Chem. Erde 71 155–170.

    Article  Google Scholar 

  • Regnoult R A 1986 Geological Synthesis of Cameroon; Directorate of Mines and Geology, Yaoundé, Cameroon, 118p.

  • Roddaz M, Viers J, Brusset S, Baby P, Boucayrand C and Hérail G 2006 Controls on weathering and provenance in the Amazonian foreland Basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments; Chem. Geol. 226 31–65.

    Article  Google Scholar 

  • Roser B P and Korsch R J 1986 Determination of tectonic setting of sandstone–mudstone suites using Si2O content and K2O/Na2O ratio; J. Geol. 94 635–650.

    Article  Google Scholar 

  • Roser B P and Korsch R J 1988 Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data; Chem. Geol. 67 119–139.

    Article  Google Scholar 

  • Salard-Chebodaeff M 1981 Palynologie Maestrichtienne et Tertiaire du Cameroun. Résultats Botaniques; Rev. Palaeobot. Palynol. 32 401–439.

    Article  Google Scholar 

  • Shang C K, Satir M, Siebel W, Nsifa E N, Taubald H, Liégeois J-P and Tchoua F M 2004 TTG magmatism in the Congo craton; a view from major and trace element geochemistry, Rb–Sr and Sm–Nd systematics: Case of the Sangmelima region, Ntem complex, southern Cameroon; J. Afr. Earth Sci. 40 61–79.

    Article  Google Scholar 

  • Shang C K, Satir M, Nsifa E N, Liégeois J-P, Siebel W and Taubald H 2007 Archean high-K granitoids produced by remelting of earlier Tonalite–Trondhjemite–Granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon; Int. J. Earth Sci. 96 817–841.

    Article  Google Scholar 

  • Singh P and Rajamani V 2001 REE geochemistry of recent clastic sediments from the Kaveri floodplains, southern India: Implication to source area weathering and sedimentary processes; Geochim. Cosmochim. Acta 65 3093–3108.

    Article  Google Scholar 

  • Sonfack N A, Ngueutchoua G, Kontchipe Ngagoum Y S, Temgo Sopie F, Nkouathio D G, Wouatong A S L, Tchatchueng R, Nguemo Kenfack G R and Njanko T 2021 Mineralogical and geochemical signatures of surface stream sediments from Dibamba River basin, SW Cameroon: Implications for provenance, weathering, and tectonic setting; J. Afr. Earth Sci., https://doi.org/10.1016/j.jafrearsci.2021.104251.

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; Blackwell Scientific, Oxford, 312p.

    Google Scholar 

  • Taylor S R and McLennan S M 1995 The geochemical evaluation of the continental crust; Rev. Geophys. 33 241–265.

    Article  Google Scholar 

  • Tchakounté J, Eglinger A, Toteu S F, Zeh A, Nkoumbou C, Mvondo-Ondoa J, Penaye J, Maarten de Wit M and Barbey P 2017 The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic central African orogenic belt (Bafia area, Cameroon); Precamb. Res. 299 210–229.

    Article  Google Scholar 

  • Tchameni R, Mezger K, Nsifa N E and Pouclet A 2000 Late Archean crustal evolution in the Congo craton: Evidence from the K-rich granitoids of the Ntem Complex, southern Cameroon; J. Afr. Earth Sci. 30 133–147.

    Article  Google Scholar 

  • Tchameni R, Mezger K, Nsifa N E and Pouclet A 2001 Crustal origin of early Proterozoic syenites in the Congo craton (Ntem complex), south Cameroon; Lithos 57 23–42.

    Article  Google Scholar 

  • Tchameni R, Pouclet A, Penaye J, Ganwa A A and Toteu S F 2006 Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting; J. Afr. Earth Sci. 30 133–147.

    Article  Google Scholar 

  • Tchouatcha M S, Tamfuh P A, Kemteu Sobdjou C, Mbesse C O and Ngnotue T 2020 Provenance, palaeoweathering and depositional environment of the cretaceous deposits from the Babouri–Figuil and Mayo Oulo–Lere Basins (North-Cameroon) during the Southern Atlantic opening: Geochemical constraints; J. Afr. Earth Sci. 174 104052, https://doi.org/10.1016/j.jafrearsci.2020.104052.

    Article  Google Scholar 

  • Tchouatcha M S, Kouske A P, Said Deaf A and Mioumnde A P 2021 Geochemical, mineralogical and sedimentological analyses of reworked sediments (new) in the syn- to post-rift Middle Cretaceous–Quaternary detrital deposits from western Atlantic margin of Cameroon: Evidence from sedimentation-erosion alternation in the context of passive margin evolution; Acta Geochem., https://doi.org/10.1007/s11631-021-00455-5.

    Article  Google Scholar 

  • Toteu S F, Bertrand J M, Penaye J, Macaudière J, Angoua S and Barbey P 1991 Cameroon: A tectonic keystone in the Pan-African network; In: The Early Proterozoic Trans-Hudson Orogen of North America (ed.) Lewry J F, Stauffer M R, Geosci. Can. Spec. Paper 37 483–496.

  • Toteu S F, Van Schmus W R, Penaye J and Michard A 2001 New U–Pb and Sm–Nd data from north-central Cameroon and its bearing on the Pre-Pan-African history of central Africa; Precamb. Res. 108 45–73.

    Article  Google Scholar 

  • Toteu S F, Penaye J, Deloule E, Van Schmus W R and Tchameni R 2006 Diachronous evolution of volcano-sedimentary basins north of the Congo craton: Insights from U–Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé groups (Cameroon); J. Afr. Earth Sci. 44 428–442.

  • Toteu S F, Maarten de Wit, Penaye J, Kerstin Drost, Tait J A, Houketchang Bouyo M, Van Schmus W R, Hielke Jelsma, Moloto-A-Kenguemba G R, Da Silva Filho A F, Lerouge C and Moctar Doucouré 2022 Geochronology and correlations in Central African Fold Belt along the northern edge of the Congo Craton; New insights from U–Pb dating of zircons from Cameroon, Central African Republic, and southwestern Chad Cameroon and its bearing on the Pre-Pan-African history of central Africa; Gondwana Res. 107 296–324.

  • Tsoungui P N E, Ganno S, Njiosseu Tanko E L, Mbongue J L N, Woguia B K, Tamehe L S, Takodjou Wambo J D and Nzenti J P 2019 Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area, SW Cameroon; Acta Geochim., https://doi.org/10.1007/s11631-019-00368-4.

  • Verma S P and Armstrong-Altrin J S 2013 New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Pre-Cambrian basins; Chem. Geol. 355 117–180.

    Article  Google Scholar 

  • Verma S P and Armstrong-Altrin J S 2016 Geochemical discrimination of siliciclastic sediments from active and passive margin settings; Sedim. Geol. 332 1–12.

    Article  Google Scholar 

  • Vicat J P and Pouclet A 1995 Nature du magmatisme lié à une extension pré-panafricaine: Les dolérites des bassins de Comba et de Sembé-Ouesso; Bull. Soc. Géol. Fr. 166(4) 355–364.

    Article  Google Scholar 

  • Vicat J P, Léger J M, Nsifa N E, Piguet P, Zenith J P, Tchameni R and Pouclet A 1996 Distinction au sein du craton congolais du Sud-Ouest du Cameroun de deux épisodes doléritiques initiant les cycles orogéniques éburnéen (paleoprotérozoique) et panafricain (Néoprotérozoique); C.R. Acad. Sci. Paris 323 575–582.

    Google Scholar 

  • Vosoughi Moradi A, Sari A and Akkaya P 2016 Geochemistry of the Miocene oil shale (Hançilli Formation) in the Çankiri-Çorum Basin, Central Turkey: Implications for paleoclimate conditions, source-area weathering, provenance, and tectonic setting; Sedim. Geol. 78 136–150.

    Google Scholar 

  • Wang W and Zhou M-F 2013 Petrological and geochemical constraints on provenance, paleoweathering, and tectonic setting of the Neoproterozoic sedimentary basin in the eastern Jiangnan Orogen, South China; J. Sedim. Res. 83 975–994.

    Article  Google Scholar 

  • Wronkiewicz D J and Condie K C 1987 Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance; Geochim. Cosmochim. Acta 51 2401–2416.

    Article  Google Scholar 

  • Zaid S M 2012 Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt; J. Afr. Earth Sci. 66/67 56–71.

    Article  Google Scholar 

  • Zhang L, Qin X, Liu J, Sun C, Mu Y, Gao J, Guo W, An S and Lu C 2016 Geochemistry of sediments from the Huaibei Plain (east China: Implications for provenance, weathering, and invasion of the Yellow River into the Huaihe River; J. Asian Earth Sci. 121 72–83.

    Article  Google Scholar 

Download references

Acknowledgements

This article is a part of the first author’s doctoral research. The current work was supported by the Department of Earth Sciences, University of Dschang, through an internal project. We thank the ALS Geochemical Laboratory, Vancouver, Canada, for the XRF and ICP-MS analyses and the University of Liege (Belgium) for XRD. We also express our thanks to the reviewers for their comments and inspiring suggestions on the earlier version of the manuscript. JSAA participated in this work during the sabbatical period at Bharathidasan University, which was approved by DGAPA (PASPA), UNAM.

Author information

Authors and Affiliations

Authors

Contributions

Francis Temgo Sopie and Gabriel Ngueutchoua contributed to the study conception. Field and laboratory works were performed by Francis Temgo Sopie, Daoud Fossa, and Lesly Tawani Tembu. The first draft of the manuscript was written by Francis Temgo Sopie. Théophile Njanko, Aristide Nadine Sonfack, and Yannick Steve Kontchipe Ngagoum were in charge of the geological mapping of this paper. John S Armstrong-Altrin contributed to the interpretation and discussion of geochemical data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gabriel Ngueutchoua.

Additional information

Communicated by George Mathew

Supplementary materials pertaining to this article are available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 707 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temgo Sopie, F., Ngueutchoua, G., Armstrong-Altrin, J.S. et al. Provenance, weathering, and tectonic setting of the Yoyo, Kribi, and Campo beach sediments in the southern Gulf of Guinea, SW Cameroon. J Earth Syst Sci 132, 92 (2023). https://doi.org/10.1007/s12040-023-02101-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02101-5

Keywords

Navigation