Skip to main content

Advertisement

Log in

Permafrost in the Upper Indus Basin: An active layer dynamics

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Permafrost in the Upper Indus Basin (UIB) in Ladakh, India, is a critical water source and is less studied. Identifying permafrost and its characteristics is a crucial knowledge gap in the UIB. Thus, understanding the permafrost active layer dynamics is critical and essential due to its implications on regional hydrology, infrastructure stability, and disaster occurrence. For this purpose, an experimental site is prepared with 11 plots having two near-surface ground temperature loggers each, i.e., 22 in total, in the upper Ganglass catchment, a sub-region of the UIB, Ladakh. The permafrost active layer thickness characteristics and its thaw progression are simulated using the 1-D GEOtop model with forcing from these 22 loggers from 2016 to 2020. The snow days are calculated using the near-surface ground temperature. The simulation results show no permafrost at 4727 m a.s.l. consistently, whereas all the plots above 4900 m a.s.l. show permafrost active layer thickness, in particular, up to 4 m at 4942 m a.s.l. Permafrost characteristics significantly differ between a warmer (colder) year with low (high) snow. The mean surface offset of the catchment ranges between −0.01° and 5.5°C. These findings on permafrost and associated periglacial processes will provide a critical knowledge base for the stability of high-elevation infrastructure, glacial lakes, regional hydrology and climate, particularly for water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Allen S K, Fiddes J, Linsbauer A, Randhawa S S, Saklani B and Salzmann N 2016 Permafrost studies in Kullu District, Himachal Pradesh; Curr. Sci. 111(3) 550–553, https://doi.org/10.18520/cs/v111/i3/550-553.

    Article  Google Scholar 

  • Azam M F, Wagnon P, Berthier E, Vincent C, Fujita K and Kargel J S 2018 Review of the status and mass changes of Himalayan-Karakoram glaciers; J. Glaciol. 64(243) 61–74, https://doi.org/10.1017/jog.2017.86.

    Article  Google Scholar 

  • Bertoldi G, Notarnicola C, Leitinger G, Endrizzi S, Zebisch M, Della Chiesa S and Tappeiner U 2010 Topographical and ecohydrological controls on land surface temperature in an alpine catchment; Ecohydrology 3(2) 189–204, https://doi.org/10.1002/eco.129.

    Article  Google Scholar 

  • Bhutiyani M R 1999 Mass-balance studies on Siachen Glacier in the Nubra valley, Karakoram Himalaya, India; J. Glaciol. 45(149) 112–118, https://doi.org/10.3189/S0022143000003099.

    Article  Google Scholar 

  • Bilal H, Chamhuri S, Bin Mokhtar M and Kanniah K D 2019 Recent snow cover variation in the Upper Indus Basin of Gilgit Baltistan, Hindukush Karakoram Himalaya; J. Mt. Sci. 16(2) 296–308, https://doi.org/10.1007/s11629-018-5201-3.

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J G, Frey H, Kargel J S, Fujita K and Scheel M et al. 2012 The state and fate of Himalayan glaciers; Science 336(6079) 310–314, https://doi.org/10.1126/science.1215828.

    Article  Google Scholar 

  • Bolch T, Shea J M, Liu S, Azam F M, Gao Y, Gruber S, Immerzeel W W, Kulkarni A, Li H, Tahir A A, Zhang G and Zhang Y 2019 Status and change of the cryosphere in the extended Hindu Kush Himalaya Region; In: The Hindu Kush Himalaya Assessment (eds) Wester P, Mishra A, Mukherji A and Shrestha A, Springer, Cham, pp. 209–255.

    Chapter  Google Scholar 

  • Burbank D W, Blythe A E, Putkonen J, Pratt-Sitaula B, Gabet E, Oskin M, Barros A and Ojha T P 2003 Decoupling of erosion and precipitation in the Himalayas; Nature 426(6967) 652–655, https://doi.org/10.1038/nature02187.

    Article  Google Scholar 

  • Dall’Amico M, Endrizzi S, Gruber S and Rigon R 2011a A robust and energy-conserving model of freezing variably-saturated soil; Cryosphere 5(2) 469–484, https://doi.org/10.5194/tc-5-469-2011.

    Article  Google Scholar 

  • Dall’Amico M, Endrizzi S and Rigon R 2011b Snow mapping of an alpine catchment through the hydrological model GEOtop; In: Proceedings Conference Eaux En Montagne, Lyon, pp. 16–17.

  • Dall’Amico M, Endrizzi S and Tasin S 2018 MYSNOWMAPS: Operative high-resolution real-time snow mapping; In: Proceedings, International Snow Science Workshop, Innsbruck, Austria, pp. 328–332.

  • Danby R K and Hik D S 2007 Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline; Glob. Chang. Biol. 13(2) 437–451, https://doi.org/10.1111/j.1365-2486.2006.01302.x.

    Article  Google Scholar 

  • de Grandpré I, Fortier D and Stephani E 2012 Degradation of permafrost beneath a road embankment enhanced by heat advected in groundwater; Can. J. Earth Sci. 49(8) 953–962, https://doi.org/10.1139/e2012-018.

    Article  Google Scholar 

  • Endrizzi S, Gruber S and Dall’Amico M and Rigon R 2014 GEOtop 2.0: Simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects; Geosci. Model. Dev. 7(6) 2831–2857, https://doi.org/10.5194/gmd-7-2831-2014.

    Article  Google Scholar 

  • Engel M, Notarnicola C, Endrizzi S and Bertoldi G 2017 Snow model sensitivity analysis to understand spatial and temporal snow dynamics in a high-elevation catchment; Hydrol. Process. 31(23) 4151–4168, https://doi.org/10.1002/hyp.11314.

    Article  Google Scholar 

  • Farhan S B, Zhang Y, Aziz A, Gao H, Ma Y, Kazmi J, Shahzad A, Hussain I, Mansha M, Umar M, Nasir J, Shafiq M, Farhan Y, Shaikh S, Bin Zamir U, Asad F and Ahmed R 2020 Assessing the impacts of climate change on the high altitude snow- and glacier-fed hydrological regimes of Astore and Hunza, the sub-catchments of Upper Indus Basin; J. Water Clim. Chang. 11(2) 479–490, https://doi.org/10.2166/wcc.2018.107.

    Article  Google Scholar 

  • Fiddes J and Gruber S 2012 TopoSUB: A tool for efficient large area numerical modelling in complex topography at sub-grid scales; Geosci. Model. Dev. 5(5) 1245–1257, https://doi.org/10.5194/gmd-5-1245-2012.

    Article  Google Scholar 

  • Fiddes J, Endrizzi S and Gruber S 2015 Large-area land surface simulations in heterogeneous terrain driven by global data sets: Application to mountain permafrost; Cryosphere 9(1) 411–426, https://doi.org/10.5194/tc-9-411-2015.

    Article  Google Scholar 

  • Frey H, Machguth H, Huss M, Huggel C, Bajracharya S, Bolch T, Kulkarni A, Linsbauer A, Salzmann N and Stoffel M 2014 Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods; Cryosphere 8(6) 2313–2333, https://doi.org/10.5194/tc-8-2313-2014.

    Article  Google Scholar 

  • Gadek B and Leszkiewicz J 2010 Influence of snow cover on ground surface temperature in the zone of sporadic permafrost, Tatra Mountains, Poland and Slovakia; Cold Reg. Sci. Technol. 60(3) 205–211, https://doi.org/10.1016/j.coldregions.2009.10.004.

    Article  Google Scholar 

  • Goodrich L E 1982 The influence of snow cover on the ground thermal regime; Can. Geotech. J. 19(4) 421–432, https://doi.org/10.1139/t82-047.

    Article  Google Scholar 

  • Gruber S 2012 Derivation and analysis of a high-resolution estimate of global permafrost zonation; Cryosphere 6(1) 221–233, https://doi.org/10.5194/tc-6-221-2012.

    Article  Google Scholar 

  • Gruber S, Fleiner R, Guegan E, Panday P, Schmid M O, Stumm D, Wester P, Zhang Y and Zhao L 2017 Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region; Cryosphere 11(1) 81–99, https://doi.org/10.5194/tc-11-81-2017.

    Article  Google Scholar 

  • Gu L, Yao J, Hu Z and Zhao L 2015 Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau; Atmos. Res. 153 553–564, https://doi.org/10.1016/j.atmosres.2014.10.012.

    Article  Google Scholar 

  • Gubler S 2013 Measurement variability and model uncertainty in mountain permafrost research, University of Zurich.

  • Gubler S, Endrizzi S, Gruber S and Purves R S 2013 Sensitivities and uncertainties of modeled ground temperatures in mountain environments; Geosci. Model. Dev. 6(4) 1319–1336, https://doi.org/10.5194/gmd-6-1319-2013.

    Article  Google Scholar 

  • Hewitt K and Liu J 2010 Ice-dammed lakes and outburst floods, Karakoram Himalaya: Historical perspectives on emerging threats; Phys. Geogr. 31(6) 528–551, https://doi.org/10.2747/0272-3646.31.6.528.

    Article  Google Scholar 

  • Immerzeel W W, van Beek L P H and Bierkens M F P 2010 Climate change will affect the Asian water towers; Science 328(5984) 1382–1385, https://doi.org/10.1126/science.1183188.

    Article  Google Scholar 

  • Isaksen K, Ødegård R S, Etzelmüller B, Hilbich C, Hauck C, Farbrot H, Eiken T, Hygen H O and Hipp T F 2011 Degrading mountain permafrost in Southern Norway: Spatial and temporal variability of mean ground temperatures, 1999–2009; Permafr. Periglac. Process 22(4) 361–377, https://doi.org/10.1002/ppp.728.

    Article  Google Scholar 

  • Jowhar T N 2001 Geobarometric constraints on the depth of emplacement of granite from the Ladakh batholith, Northwest Himalaya, India; J. Mineral Petrol. Sci. 96(6) 256–264, https://doi.org/10.2465/jmps.96.256.

    Article  Google Scholar 

  • Kääb A, Berthier E, Nuth C, Gardelle J and Arnaud Y 2012 Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas; Nature 488(7412) 495–498, https://doi.org/10.1038/nature11324.

    Article  Google Scholar 

  • Kaser G, Grosshauser M and Marzeion B 2010 Contribution potential of glaciers to water availability in different climate regimes; Proc. Natl. Acad. Sci. 107(47) 20,223–20,227, https://doi.org/10.1073/pnas.1008162107.

    Article  Google Scholar 

  • Kumar A, Negi H S, Kumar K, Shekhar C and Kanda N 2019 Quantifying mass balance of East-Karakoram glaciers using geodetic technique; Polar Sci. 19 24–39, https://doi.org/10.1016/j.polar.2018.11.005.

    Article  Google Scholar 

  • Kumar A, Negi H S and Kumar K 2020 Long-term mass balance modelling (1986–2018) and climate sensitivity of Siachen Glacier, East Karakoram; Environ. Monit. Assess. 192 368, https://doi.org/10.1007/s10661-020-08323-0.

    Article  Google Scholar 

  • Lone S A, Jeelani G, Deshpande R D and Mukherjee A 2019 Stable isotope (δ18O and δD) dynamics of precipitation in a high altitude Himalayan cold desert and its surroundings in Indus river basin, Ladakh; Atmos. Res. 221 46–57, https://doi.org/10.1016/j.atmosres.2019.01.025.

    Article  Google Scholar 

  • Lund J, Forster R R, Rupper S B, Deeb E J, Marshall H P, Hashmi M Z and Burgess E 2020 Mapping snowmelt progression in the Upper Indus Basin with synthetic aperture radar; Front. Earth Sci. 7, https://doi.org/10.3389/feart.2019.00318.

  • Lutz A F, Immerzeel W W, Shrestha A B and Bierkens M F P 2014 Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation; Nat. Clim. Chang. 4(7) 587–592, https://doi.org/10.1038/nclimate2237.

    Article  Google Scholar 

  • Muhammad S, Tian L and Khan A 2019 Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions; J. Hydrol. 574 467–475, https://doi.org/10.1016/j.jhydrol.2019.04.057.

    Article  Google Scholar 

  • Nag D and Phartiyal B 2015 Climatic variations and geomorphology of the Indus River valley, between Nimo and Batalik, Ladakh (NW Trans Himalayas) during Late Quaternary; Quat. Int. 371 87–101, https://doi.org/10.1016/j.quaint.2014.08.045.

    Article  Google Scholar 

  • Negi H S, Kumar A, Kanda N, Thakur N K and Singh K K 2021 Status of glaciers and climate change of East Karakoram in early twenty-first century; Sci. Total Environ. 753 141914, https://doi.org/10.1016/j.scitotenv.2020.141914.

    Article  Google Scholar 

  • Nitzbon J, Westermann S, Langer M, Martin L C P, Strauss J, Laboor S and Boike J 2020 Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate; Nat. Commun. 11(1) 2201, https://doi.org/10.1038/s41467-020-15725-8.

    Article  Google Scholar 

  • Outcalt S I, Nelson F E and Hinkel K M 1990 The zero-curtain effect: Heat and mass transfer across an isothermal region in freezing soil; Water Resour. Res. 26(7) 1509–1516, https://doi.org/10.1029/WR026i007p01509.

    Article  Google Scholar 

  • Pablo M A, Ramos M and Molina A 2014 Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antartica; Solid Earth 5(2) 721–739, https://doi.org/10.5194/se-5-721-2014.

    Article  Google Scholar 

  • Peng X, Zhang T, Cao B, Wang Q, Wang K, Shao W and Guo H 2016 Changes in freezing-thawing index and soil freeze depth over the Heihe River Basin, Western China; Arctic, Antarctic Alp Res. 48(1) 161–176, https://doi.org/10.1657/AAAR00C-13-127.

    Article  Google Scholar 

  • Phukan A 1982 Design considerations for roadways on Permafrost Final Report.

  • Plaza C, Pegoraro E, Bracho R, Celis G, Crummer K G, Hutchings J A, Hicks Pries C E, Mauritz M, Natali S M, Salmon V G, Schädel C, Webb E E and Schuur E A G 2019 Direct observation of permafrost degradation and rapid soil carbon loss in tundra; Nat. Geosci. 12(8) 627–631, https://doi.org/10.1038/s41561-019-0387-6.

    Article  Google Scholar 

  • Pogliotti P 2011 Influence of snow cover on MAGST over complex morphologies in mountain permafrost regions; University of Torino, Torino.

    Google Scholar 

  • Pritchard H D 2019 Asia’s shrinking glaciers protect large populations from drought stress; Nature 569(7758) 649–654, https://doi.org/10.1038/s41586-019-1240-1.

    Article  Google Scholar 

  • Putkonen J 2008 What dictates the occurrence of zero curtain effect; In: Ninth International Conference on Permafrost (eds) Kane D L and Hinkel K M, Fairbanks, Alaska, pp. 1451–1455.

  • R Core Team 2021 R: A language and environment for statistical computing.

  • Rao B S, Gupta A, Guru N, Sweta, Maheshwari R, Raju P V and Rao V V 2020 Glacial lake atlas of Indus River Basin, National Remote Sensing Centre, ISRO, Hyderabad, India.

  • Rastogi S P and Narayan S 1999 Permafrost areas in Tso Kar Basin; In: Symposium for snow, ice and glaciers, March 1999, Geol. Surv. India Spec. Publ. 53 315–319.

  • Riseborough D W 2002 The mean annual temperature at the top of permafrost, the TTOP model, and the effect of unfrozen water; Permafr. Periglac. Process 13(2) 137–143, https://doi.org/10.1002/ppp.418.

    Article  Google Scholar 

  • Schmid M O 2011 Variability of ground surface temperatures and related processes in high Alpine regions; University of Zurich, Zurich.

    Google Scholar 

  • Schmid M O, Gubler S, Fiddes J and Gruber S 2012 Inferring snowpack ripening and melt-out from distributed measurements of near-surface ground temperatures; Cryosphere 6(5) 1127–1139, https://doi.org/10.5194/tc-6-1127-2012.

    Article  Google Scholar 

  • Schmid M O, Baral P, Gruber S, Shahi S, Shrestha T, Stumm D and Wester P 2015 Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth; Cryosphere 9(6) 2089–2099, https://doi.org/10.5194/tc-9-2089-2015.

    Article  Google Scholar 

  • Schmidt S, Weber B and Winiger M 2009 Analyses of seasonal snow disappearance in an alpine valley from micro- to meso-scale (Loetschental, Switzerland); Hydrol. Process. 23(7) 1041–1051, https://doi.org/10.1002/hyp.7205.

    Article  Google Scholar 

  • Schmidt S, Nüsser M, Baghel R and Dame J 2020 Cryosphere hazards in Ladakh: The 2014 Gya glacial lake outburst flood and its implications for risk assessment; Nat. Hazards 104(3) 2071–2095, https://doi.org/10.1007/s11069-020-04262-8.

    Article  Google Scholar 

  • Sharma K K and Choubey V M 1983 Petrology, geochemistry and geochronology of the southern margin of the Ladakh Batholith between Upshi and Chumathang; Geol. Indus Suture Zo Ladakh Wadia Inst. Himal. Geol., Dehra Dun, India, pp. 41–60.

  • Smith M W and Riseborough D W 2002 Climate and the limits of permafrost: A zonal analysis; Permafr. Periglac. Process. 13(1) 1–15, https://doi.org/10.1002/ppp.410.

    Article  Google Scholar 

  • Song Y, Jin L, Peng H and Liu H 2020 Development of thermal and deformation stability of Qinghai-Tibet Highway under sunny-shady slope effect in southern Tanglha region in recent decade; Soils Found. 60(2) 342–355, https://doi.org/10.1016/j.sandf.2020.01.012.

    Article  Google Scholar 

  • Staub B 2015 The evolution of mountain permafrost in the context of climate change: Towards a comprehensive analysis of permafrost monitoring data from the Swiss Alps; University of Fribourg, Switzerland.

    Google Scholar 

  • Staub B and Delaloye R 2017 Using near-surface ground temperature data to derive snow insulation and melt indices for mountain permafrost applications; Permafr. Periglac. Process. 28(1) 237–248, https://doi.org/10.1002/ppp.1890.

    Article  Google Scholar 

  • Thayyen R J 2020 Hydrology of the cold-arid Himalaya; In: Himalayan weather and climate and their impact on the environment, Springer International Publishing, pp. 399–417.

  • Thayyen R J, Dimri A P, Kumar P and Agnihotri G 2013 Study of cloudburst and flash floods around Leh, India, during August 4–6, 2010; Nat. Hazards 65(3) 2175–2204, https://doi.org/10.1007/s11069-012-0464-2.

    Article  Google Scholar 

  • Van Everdingen R 2005 Multi-language glossary of permafrost and related ground-ice terms; National Snow and Ice Data Center/World Data Center for Glaciology, Boulder.

    Google Scholar 

  • Wani J M, Thayyen R J, Gruber S, Ojha C S P and Stumm D 2020 Single-year thermal regime and inferred permafrost occurrence in the upper Ganglass catchment of the cold-arid Himalaya, Ladakh, India; Sci. Total Environ. 703, https://doi.org/10.1016/j.scitotenv.2019.134631.

  • Wani J M, Thayyen R J, Ojha C S P and Gruber S 2021 The surface energy balance in a cold and arid permafrost environment, Ladakh, Himalayas, India; Cryosphere 15(5) 2273–2293, https://doi.org/10.5194/tc-15-2273-2021.

    Article  Google Scholar 

  • Wickham H 2016 ggplot2: Elegant Graphics for Data Analysis.

  • Wickham H and Francois R 2016 dplyr: A grammar of data manipulation.

  • Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen T, Miller E, Bache S, Müller K, Ooms J, Robinson D, Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K and Yutani H 2019 Welcome to the Tidyverse; J. Open Source Softw. 4(43) 1686, https://doi.org/10.21105/joss.01686.

    Article  Google Scholar 

  • Wünnemann B, Reinhardt C, Kotlia B S and Riedel F 2008 Observations on the relationship between lake formation, permafrost activity and lithalsa development during the last 20,000 years in the Tso Kar basin, Ladakh, India; Permafr. Periglac. Process. 19(4) 341–358, https://doi.org/10.1002/ppp.631.

    Article  Google Scholar 

  • Yao J, Zhao L, Gu L, Qiao Y and Jiao K 2011 The surface energy budget in the permafrost region of the Tibetan Plateau; Atmos. Res. 102 394–407, https://doi.org/10.1016/j.atmosres.2011.09.001.

    Article  Google Scholar 

  • Yao J, Gu L, Yang C, Chen H, Wang J, Ding Y, Li R, Zhao L, Xiao Y, Qiao Y, Shi J and Chen C 2020 Estimation of surface energy fluxes in the permafrost region of the Tibetan Plateau based on situ measurements and the surface energy balance model; Int. J. Climatol. 40(13) 5783–5800, https://doi.org/10.1002/joc.6551.

    Article  Google Scholar 

  • Zhang T 2005 Influence of the seasonal snow cover on the ground thermal regime: An overview; Rev. Geophys. 43(4) 1–23, https://doi.org/10.1029/2004RG000157.

    Article  Google Scholar 

  • Zhang T, Frauenfeld O W, Serreze M C, Etringer A, Oelke C, McCreight J, Barry R G, Gilichinsky D, Yang D, Ye H, Ling F and Chudinova S 2005 Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin; J. Geophys. Res. D Atmos. 110 1–14, https://doi.org/10.1029/2004JD005642.

    Article  Google Scholar 

Download references

Acknowledgements

JMW, on behalf of RJT (Deceased), thanks to Director, NIH, Dr J V Tyagi and Head, WRS division, Dr Sanjay K Jain, for their encouragement and support. The financial support under the National Mission on Himalayan Studies (NMHS), MoEFCC, Gov. of India (GBPNI/NMHS-2019-20/ MG265) and SERB project (EMR/2015/000887) is duly acknowledged. We also to thank the GEOtop developers for keeping the model open-source. The GEOtop model 2.0 (Endrizzi et al. 2014) source code is freely available and can be found at https://github.com/geotopmodel/geotop/tree/se27xx (last access: August 13, 2021). Data analysis and plotting were performed using R (Wickham 2016; Wickham and Francois 2016; Wickham et al. 2019; R Core Team 2021).

Author information

Authors and Affiliations

Author notes

  1. Deceased.

    • Renoj J Thayyen
Authors

Contributions

JMW carried out the data collection in the field, performed data processing and analysis, GEOtop model simulations and contributed to manuscript writing. APD assisted with data collection and manuscript preparation, RJT set up field instruments, planned fieldwork for instrumentation and data collection and participated in the data interpretation and manuscript preparation.

Corresponding author

Correspondence to A P Dimri.

Additional information

Communicated by Somnath Dasgupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, J.M., Dimri, A.P. & Thayyen, R.J. Permafrost in the Upper Indus Basin: An active layer dynamics. J Earth Syst Sci 132, 61 (2023). https://doi.org/10.1007/s12040-023-02074-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02074-5

Keywords

Navigation