Skip to main content

Advertisement

Log in

Chemical characterisation of fine aerosols in a smart city on the east coast of India: Seasonal variability and its impact on visibility impairment

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This study investigates the seasonal variation of PM (PM2.5 and PM10) over Bhubaneswar (20.3ºN, 85.827ºE), a smart city on the eastern coast of India. PM2.5 and PM10 ranged from 11.1 to 154.2 µg.m−3 and 20.4–273.8 µg.m−3, respectively. Carbonaceous (EC, OC, WSOC) species and water-soluble inorganic ions (WSIIs) were also examined for PM2.5 samples. SO42− ion was found to be most prevalent among all the species accounting to ~24% of PM2.5 mass, followed by OC (~11%), NH4+ (10%), EC (5%), NO 3 (4%), Na+ (4%), K+ (3%), WSOC (3%), Cl (2%). The relatively low mean OC/EC ratio (1.9±0.4) and WSOC/OC (0.25±0.1) suggest the dominance of fossil fuel emissions over the study site. Additionally, for the first time in the eastern region, the role of several chemical species in light extinction coefficient (bext) and visibility impairment is investigated using IMPROVE algorithm. The mean bext is 311.5±141.8 Mm−1 during the observation period, with a dominant contribution from (NH4)2SO4 followed by carbonaceous species (OM and EC). However, visibility levels sharply diminished by <9 km during winter than post-monsoon (<10 km), pre-monsoon (<19 km) and monsoon (<27 km) over Bhubaneswar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Agarwal A, Satsangi A, Lakhani A and Kumari K M 2020 Seasonal and spatial variability of secondary inorganic aerosols in PM2.5at Agra: Source apportionment through receptor models; Chemosphere 242 125132, https://doi.org/10.1016/j.chemosphere.2019.125132.

  • Aryasree S, Nair P R, Girach I A and Jacob S 2015a In-situ measured seasonal characteristics of near-surface aerosols over Bay of Bengal and MODIS-retrieved columnar properties: A multicampaign analysis; J. Geophys. Res. Atmos. 120(19) 10,548–10,568, https://doi.org/10.1002/2015JD023418.

    Article  Google Scholar 

  • Aryasree S, Nair P R, Girach I A and Jacob S 2015b Winter time chemical characteristics of aerosols over the Bay of Bengal: Continental influence; Environ. Sci. Pollut. Res. 22 14,901–14,918, https://doi.org/10.1007/s11356-015-4700-7.

    Article  Google Scholar 

  • Aswini A R, Hegde P and Nair P R 2018 Carbonaceous and inorganic aerosols over a sub-urban site in peninsular India: Temporal variability and source characteristics; Atmos. Res. 199 40–53, https://doi.org/10.1016/j.atmosres.2017.09.005.

    Article  Google Scholar 

  • Aswini A R, Hegde P, Nair P R and Aryasree S 2019 Seasonal changes in carbonaceous aerosols over a tropical coastal location in response to meteorological processes; Sci. Total Environ. 656 1261–1279, https://doi.org/10.1016/j.scitotenv.2018.11.366.

    Article  Google Scholar 

  • Bindu G, Nair P R, Aryasree S, Hegde P and Jacob S 2016 Pattern of aerosol mass loading and chemical composition over the atmospheric environment of an urban coastal station; J. Atmos. Sol.-Terr. Phys. 138 121–135.

    Article  Google Scholar 

  • Boreddy S K R and Kawamura K 2015 A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust; Atmos. Chem. Phys. 15(11) 6437–6453, https://doi.org/10.5194/acp-15-6437-2015.

    Article  Google Scholar 

  • Cao J J, Wang Q y, Chow J C, Watson J G, Tie X x, Shen Z x, Wang P and An Z s 2012 Impacts of aerosol compositions on visibility impairment in Xi’an, China; Atmos. Environ. 59 559–566, https://doi.org/10.1016/j.atmosenv.2012.05.036.

    Article  Google Scholar 

  • Chen Y, Sheng G, Bi X, Feng Y, Mai B and Fu J 2005 Emission Factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China; Environ. Sci. Technol. 39(6) 1861–1867, https://doi.org/10.1021/es0493650.

    Article  Google Scholar 

  • Cheng Z L, Lam K S, Chan L Y, Wang T and Cheng K K 2000 Chemical characteristics of aerosols at coastal station in Hong Kong. I: Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996; Atmos. Environ. 34(17) 2771–2783, https://doi.org/10.1016/S1352-2310(99)00343-X.

  • Custódio D, Cerqueira M, Alves C, Nunes T, Pio C, Esteves V, Frosini D, Lucarelli F and Querol X 2016 A one-year record of carbonaceous components and major ions in aerosols from an urban kerbside location in Oporto, Portugal; Sci. Total Environ. 562 822–833, https://doi.org/10.1016/j.scitotenv.2016.04.012.

    Article  Google Scholar 

  • Das R, Khezri B, Srivastava B, Datta S, Sikdar P K, Webster R D and Wang X 2015 Trace element composition of PM2.5 and PM10 from Kolkata – a heavily polluted Indian Metropolis; Atmos. Pollut. Res. 6 742–750, https://doi.org/10.5094/APR.2015.083.

    Article  Google Scholar 

  • Draxler R R and Hess G D 1997 Description of the HYSPLIT4 modeling system.

  • George S K and Nair P R 2008 Aerosol mass loading over the marine environment of Arabian Sea during ICARB: Sea-salt and non-sea-salt components; J. Earth Syst. Sci. 117(1) 333–344.

    Article  Google Scholar 

  • Guttikunda S K, Nishadh K A and Jawahar P 2019 Air pollution knowledge assessments (APnA) for 20 Indian cities; Urban Clim. 27 124–141.

  • Hegde P, Vyas B M, Aswini A R, Aryasree S and Nair P R 2020 Carbonaceous and water-soluble inorganic aerosols over a semi-arid location in northwest India: Seasonal variations and source characteristics; J. Arid Environ. 172 104018, https://doi.org/10.1016/j.jaridenv.2019.104018.

  • Hidy G M 2019 Atmospheric aerosols: Some highlights and highlighters, 1950 to 2018; Aerosol Sci. Eng. 3(1) 1–20.

    Article  Google Scholar 

  • Huang Y, Liu Y, Zhang L, Peng C and Yang F 2018 Characteristics of carbonaceous aerosol in PM2.5 at Wanzhou in the southwest of China; Atmosphere 9(2) 37.

  • Izhar S, Gupta T, Qadri A M and Panday A K 2021 Wintertime chemical characteristics of aerosol and their role in light extinction during clear and polluted days in rural Indo Gangetic plain; Environ. Pollut. 282 117034, https://doi.org/10.1016/j.envpol.2021.117034.

  • Jain S, Sharma S K, Vijayan N and Mandal T K 2020 Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four-year study over Delhi, India; Environ. Pollut. 262 114337, https://doi.org/10.1016/j.envpol.2020.114337.

  • Kerminen V M, Hillamo R, Teinilä K, Pakkanen T, Allegrini I and Sparapani R 2001 Ion balances of size-resolved tropospheric aerosol samples: Implications for the acidity and atmospheric processing of aerosols; Atmos. Environ. 35(31) 5255–5265, https://doi.org/10.1016/S1352-2310(01)00345-4.

    Article  Google Scholar 

  • Khanna I, Khare M, Gargava P and Khan A A 2018 Effect of PM2.5 chemical constituents on atmospheric visibility impairment; J. Air Waste Manag. Assoc. 68(5) 430–437, https://doi.org/10.1080/10962247.2018.1425772.

  • Lowenthal D H and Kumar N 2016 Evaluation of the IMPROVE equation for estimating aerosol light extinction; J. Air Waste Manag. Assoc. 66 726–737, https://doi.org/10.1080/10962247.2016.1178187.

    Article  Google Scholar 

  • Lyu Y, Guo H, Cheng T and Li X 2018 Particle size distributions of oxidative potential of lung-deposited particles: Assessing contributions from quinones and water-soluble metals; Environ. Sci. Technol. 52(11) 6592–6600, https://doi.org/10.1021/acs.est.7b06686.

    Article  Google Scholar 

  • Mahapatra P S, Ray S, Das N, Mohanty A, Ramulu T S, Das T, Chaudhury G R and Das S N 2013 Urban air-quality assessment and source apportionment studies for Bhubaneshwar, Odisha;Theor. Appl. Climatol. 112(1–2) 243–251, https://doi.org/10.1007/s00704-012-0732-9.

    Article  Google Scholar 

  • Mahapatra P S, Panda S, Walvekar P P, Kumar R, Das T and Gujar B R 2014 Seasonal trends, meteorological impacts, and associated health risks with atmospheric concentrations of gaseous pollutants at an Indian coastal city; Environ. Sci. Pollut. Res. 21(19) 11,418–11,432, https://doi.org/10.1007/s11356-014-3078-2.

    Article  Google Scholar 

  • Mahapatra P S, Sinha P R, Boopathy R, Das T, Mohanty S, Sahu S C and Gujar B R 2018 Seasonal progression of atmospheric particulate matter over an urban coastal region in peninsular India: Role of local meteorology and long-range transport; Atmos. Res. 199 145–158, https://doi.org/10.1016/j.atmosres.2017.09.001.

    Article  Google Scholar 

  • Mahapatra P S, Panda U, Mallik C, Boopathy R, Jain S, Sharma S K, Mandal T K, Senapati S, Sathpathy S, Panda S and Das T 2021 Chemical, microstructural, and biological characterisation of wintertime PM2.5 during a land campaign study in a coastal city of eastern India; Atmos. Pollut. Res. 12(9) 101164, https://doi.org/10.1016/j.apr.2021.101164.

  • Mallik C, Mahapatra P S, Kumar P, Panda S, Boopathy R, Das T and Lal S 2019 Influence of regional emissions on SO2 concentrations over Bhubaneswar, a capital city in eastern India downwind of the Indian SO2 hotspots; Atmos. Environ. 209 220–232, https://doi.org/10.1016/j.atmosenv.2019.04.006.

    Article  Google Scholar 

  • Ming L, Jin L, Li J, Fu P, Yang W, Liu D, Zhang G, Wang Z and Li X 2017 PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events; Environ. Pollut. 223 200–212.

    Article  Google Scholar 

  • Miyazaki Y, Kondo Y, Han S, Koike M, Kodma D, Komazaki Y, Tanimoto H and Matsueda 2007 Chemical characteristics of water‐soluble organic carbon in the Asian outflow; J. Geophys. Res. Atmos. 112(D22), https://doi.org/10.1029/2007JD009116.

  • Nair P R, George S K, Aryashree S and Jacob S 2014 Chemical composition of aerosols over Bay of Bengal during pre-monsoon: Dominance of anthropogenic sources; J. Atmos. Sol.-Terr. Phys. 109 54–65, https://doi.org/10.1016/j.jastp.2014.01.004.

    Article  Google Scholar 

  • Nath J, Panda S, Patra S S, Ramasamy B and Das T 2021 Variation of black carbon and particulate matter in Bhubaneswar during the pre-monsoon: Possible impact of meteorology and COVID-19 lockdown; Curr. Sci. 120(2) 313–321.

    Article  Google Scholar 

  • Panda S, Sharma S K, Mahapatra P S, Panda U, Rath S, Mahapatra M, Mandal T K and Das T 2016 Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India; Nat. Hazards 80(3) 1709–1728, https://doi.org/10.1007/s11069-015-2049-3.

  • Panda S and Nagendra S M S 2018 Chemical and morphological characterisation of respirable suspended particulate matter (PM10) and associated health risk at a critically polluted industrial cluster; Atmos. Pollut. Res. 9(5) 791–803, https://doi.org/10.1016/j.apr.2018.01.011.

    Article  Google Scholar 

  • Pani S K, Lee C T, Chou C C K, Shimada K, Hatakeyama S, Takami A, Wang S H and Lin N H 2017 Chemical characterisation of wintertime aerosols over islands and mountains in East Asia: Impacts of the continental Asian outflow; Aerosol Air Qual. Res. 17(12) 3006–3036, https://doi.org/10.4209/aaqr.2017.03.0097.

    Article  Google Scholar 

  • Pavuluri C M, Kawamura K, Aggarwal S G and Swaminathan T 2011 Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region; Atmos. Chem. Phys. 11(15) 8215–8230.

    Article  Google Scholar 

  • Pio C, Cerqueira M, Harrison R M, Nunes T, Mirante F, Alves C, Oliveira C, Campa A S, Artíñano B and Matos M 2011 OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon; Atmos. Environ. 45(34) 6121–6132, https://doi.org/10.1016/j.atmosenv.2011.08.045.

    Article  Google Scholar 

  • Pio C A, Legrand M, Oliveira T, Afonso J D V,Santos C, Caseiro A, Fialho P, Barata F, Puxbaum H, Sánchez-Ochoa A, Kasper-Giebl A, Gelencsér A, Preunkret S and Schock M 2007 Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west‐east transect across Europe; J. Geophys. Res. Atmos. 112(D23), https://doi.org/10.1029/2006JD008038.

  • Pipal A S, Tiwari S and Satsangi P G 2016 Seasonal chemical characteristics of atmospheric aerosol particles and its light extinction coefficients over Pune, India; Aerosol Air Qual. Res. 16(8) 1805–1819, https://doi.org/10.4209/aaqr.2015.08.0529.

    Article  Google Scholar 

  • Pitchford M, Malm W, Schichtel B, Kumar N, Lowenthal D and Hand J 2007 Revised algorithm for estimating light extinction from IMPROVE particle speciation data; J. Air Waste Manag. 57(11) 1326–1336, https://doi.org/10.3155/1047-3289.57.11.1326.

    Article  Google Scholar 

  • Putaud J P, Dingenen R V, Acqua A D, Raes F, Matta E, Decesari S, Facchini M C and Fuzzi S 2004 Size-segregated aerosol mass closure and chemical composition in Monte Cimone (I) during MINATROC; Atmos. Chem. Phys. 4 889–902, https://doi.org/10.5194/acp-4-889-2004.

    Article  Google Scholar 

  • Qiao B, Chen Y, Tian M, Wang H, Yang F, Shi G, Zhang L, Peng C, Luo Q and Ding S 2019 Characterisation of water-soluble inorganic ions and their evolution processes during PM2.5 pollution episodes in a small city in southwest China; Sci. Total Environ. 650 2605–2613, https://doi.org/10.1016/j.scitotenv.2018.09.376.

    Article  Google Scholar 

  • Raaschou-Nielsen O, Andersen Z J, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen M J, Brunekreef B, Xun W W, Katsouyanni K, Dimakopoulou K, Sommar J, Forsberg B, Modig L, Oudin A, Oftedal B, Schwarze P E, Nafstad P, De Faire U, Pedersen N L, Ostenson C G, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen K T, Sørensen M, Tjønneland A, Ellermann T, Eeftens M, Peeters P H, Meliefste K, Wang M, Bueno-de-Mesquita B, Key T J, de Hoogh K, Concin H, Nagel G, Vilier A, Grioni S, Krogh V, Tsai M Y, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Trichopoulou A, Bamia C, Vineis P and Hoek G 2013 Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE); Lancet Oncol. 14(9) 813–822.

    Article  Google Scholar 

  • Rajeev P, Rajput P, Singh A K and Gupta T 2018 Study of temporal variability and mass closure of PM2.5 and its chemical constituents during weak southwest monsoon; Atmos. Pollut. Res. 9(5) 864–870.

  • Rajput P, Sarin M M, Sharma D and Singh D 2014 Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: Impact on mass absorption efficiency of elemental carbon; Environ. Sci. Process Impacts 16(10) 2371–2379.

    Article  Google Scholar 

  • Ram K, Sarin M M and Tripathi S N 2010 A 1 year record of carbonaceous aerosols from an urban site in the Indo‐Gangetic Plain: Characterisation, sources, and temporal variability; J. Geophys. Res.: Atmos. 115(D24).

  • Ram K and Sarin M M 2011 Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation; Atmos. Environ. 45(2) 460–468, https://doi.org/10.1016/j.atmosenv.2010.09.055.

    Article  Google Scholar 

  • Ram K, Sarin M M and Tripathi S N 2012 Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: Impact of biomass burning emissions in the Indo-Gangetic Plain; Environ. Sci. Technol. 46(2) 686–695.

  • Rastogi N, Singh A, Singh D and Sarin M M 2014 Chemical characteristics of PM2.5 at a source region of biomass burning emissions: Evidence for secondary aerosol formation; Environ. Pollut. 184 563–569, https://doi.org/10.1016/j.envpol.2013.09.037.

    Article  Google Scholar 

  • Rastogi N, Singh A, Sarin M M and Singh D 2016 Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions; Atmos Environ. 125 396–403, https://doi.org/10.1016/j.atmosenv.2015.06.010.

    Article  Google Scholar 

  • Reche C, Viana M, Pandolfi M, Alastuey A, Moreno T, Amato F, Ripoll A and Querol X 2012 Urban NH3 levels and sources in a Mediterranean environment; Atmos. Environ. 57 153–164, https://doi.org/10.1016/j.atmosenv.2012.04.021.

    Article  Google Scholar 

  • Reddy M S and Venkataraman C 2002 Inventory of aerosol and sulphur dioxide emissions from India. I: Fossil fuel combustion; Atmos. Environ. 36(4) 677–697.

  • Rengarajan R, Sarin M M and Sudheer A K 2007 Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high‐altitude sites in north India; J. Geophys. Res.: Atmos. 112(D21), https://doi.org/10.1029/2006JD008150.

  • Safai P D, Raju M P, Rao P S P and Pandithurai G 2014 Characterisation of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance; Atmos. Environ. 92 493–500, https://doi.org/10.1016/j.atmosenv.2014.04.055.

    Article  Google Scholar 

  • Sahu S K, Tyagi B, Pradhan C and Beig G 2019 Evaluating the variability, transport and periodicity of particulate matter over smart city Bhubaneswar, a tropical coastal station of eastern India; SN Appl. Sci. 1(5) 383.

    Article  Google Scholar 

  • Saraswati Sharma S K, Saxena M and Mandal T K 2019 Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India; Atmos. Res. 218 34–49, https://doi.org/10.1016/j.atmosres.2018.11.010.

    Article  Google Scholar 

  • Satsangi A, Pachauri T, Singla V, Lakhani A and Kumari K M 2013 Water soluble ionic species in atmospheric aerosols: Concentrations and sources at Agra in the Indo-Gangetic Plain (IGP); Aerosol Air Qual. Res. 13(6) 1877–1889, https://doi.org/10.4209/aaqr.2012.08.0227.

    Article  Google Scholar 

  • Saxena M, Sharma A, Sen A, Saxena P, Saraswati Mandal T K, Sharma S K and Sharma C 2017 Water soluble inorganic species of PM10 and PM2.5 at an urban site of Delhi, India: Seasonal variability and source; Atmos. Res. 184 112–125, https://doi.org/10.1016/j.atmosres.2016.10.005.

    Article  Google Scholar 

  • Seinfeld J H and Pandis S N 1998 Atmospheric chemistry and physics: From air pollution to climate change; John Wiley and Sons, New Jersey.

    Google Scholar 

  • Sharma S K, Mandal T K, Jain S, Saraswati, Sharma A and Saxena M 2016 Source apportionment of PM2.5 in Delhi, India using PMF model; Bull. Environ. Contam. Toxicol. 97(2) 286–293.

  • Sharma S K, Mandal T K, Saxena M, Rashmi Sharma A, Datta A and Saud T 2014 Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India; J. Atmos. Sol.-Terr. Phys. 113 10–22, https://doi.org/10.1016/j.jastp.2014.02.008.

    Article  Google Scholar 

  • Sharma S K and Mandal T K 2017 Chemical composition of fine mode particulate matter (PM2.5) in an urban area of Delhi, India and its source apportionment; Urban Clim. 21 106–122.

  • Sharma S K, Mandal T K, Sharma A, Jain S and Saraswati 2018 Carbonaceous species of PM2.5 in megacity Delhi, India during 2012–2016; Bull. Environ. Contam. Toxicol. 100(5) 695–701.

  • Srinivas B and Sarin M M 2014 PM2.5, EC and OC in atmospheric outflow from the Indo-Gangetic Plain: Temporal variability and aerosol organic carbon-to-organic mass conversion factor; Sci. Total Environ. 487 196–205.

    Article  Google Scholar 

  • Tiwari S, Srivastava A K, Chate D M, Safai P D, Bisht D S, Srivastava M K and Beig G 2014 Impacts of the high loadings of primary and secondary aerosols on light extinction at Delhi during winter time; Atmos. Environ. 92 60–68.

    Article  Google Scholar 

  • Tiwari S, Dumka U C, Kaskaoutis D G, Ram K, Panicker A S, Srivastava M K, Tiwari S, Attri S D, Soni V K and Pandey A K 2016 Aerosol chemical characterisation and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain; Atmos. Environ. 125 437–449, https://doi.org/10.1016/j.atmosenv.2015.07.031.

    Article  Google Scholar 

  • Turpin B and Lim H J 2001 Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass; Aerosol SciTech. 35 602–610.

    Google Scholar 

  • Turpin B J and Huntzicker J J 1991 Secondary formation of organic aerosol in the Los Angeles Basin: a descriptive analysis of organic and elemental carbon concentrations; Atmos. Environ. A, Gen. Top. 25(2) 207–215.

  • Venkataraman C, Reddy C K, Josson S and Reddy M S 2002 Aerosol size and chemical characteristics at Mumbai, India, during the INDOEX-IFP (1999); Atmos Environ. 36(12) 1979–1991, https://doi.org/10.1016/S1352-2310(02)00167-X.

    Article  Google Scholar 

  • Watson J G 2002 Visibility: Science and regulation; J. Air Waste Manag. Assoc. 52(6) 628–713.

    Article  Google Scholar 

  • Weber R J, Sullivan A P, Peltier R E, Russell A T, Yan B, Chen Y, Zheng M, Gouw J D,Warneke C, Brock C A, Holloway J, Atlas E and Edgerton E 2007 A study of secondary organic aerosol formation in the anthropogenic‐influenced southeastern United States; J. Geophys. Res. Atmos. 112(D13).

  • Ye Z, Liu J, Gu A, Feng F, Liu Y, Bi C, Xu J, Li L, Chen H, Chen Y, Dai L, Zhou Q and Ge X 2017 Chemical characterisation of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry; Atmos. Chem. Phys. 17(4) 2573–2592, https://doi.org/10.5194/acp-17-2573-2017.

    Article  Google Scholar 

  • Zhang X, Hecobian A, Zheng M, Frank N H and Weber R J 2010 Biomass burning impact on PM2.5 over the southeastern US during 2007: Integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis; Atmos. Chem. Phys. 10(14) 6839–6853, https://doi.org/10.5194/acp-10-6839-2010.

  • Zhang T, Cao J J, Tie X X, Shen Z X, Liu S X, Ding H, Han Y M, Wang G H, Ho K F, Qiang J and Li W T 2011 Water-soluble ions in atmospheric aerosols measured in Xi’an, China: Seasonal variations and sources; Atmos. Res. 102(1–2) 110–119, https://doi.org/10.1016/j.atmosres.2011.06.014.

    Article  Google Scholar 

  • Zhang X, Ding X, Talifu D, Wang X, Abulizi A, Maihemuti M and Rekefu S 2021 Humidity and PM2.5 composition determine atmospheric light extinction in the arid region of northwest China; J. Environ. Sci. 100 279–286, https://doi.org/10.1016/j.jes.2020.07.007.

    Article  Google Scholar 

  • Zhou J, Zhang R, Cao J, Chow J C and Watson J G 2012 Carbonaceous and ionic components of atmospheric fine particles in Beijing and their impact on atmospheric visibility; Aerosol Air Qual. Res. 12(4) 492–502, https://doi.org/10.4209/aaqr.2011.11.0218.

    Article  Google Scholar 

  • Zhou J, Xing Z, Deng J and Du K 2016a Characterising and sourcing ambient PM2.5 over key emission regions in China. I: Water-soluble ions and carbonaceous fractions; Atmos. Environ. 135 20–30, https://doi.org/10.1016/j.atmosenv.2016.03.054.

    Article  Google Scholar 

  • Zhou M, Qiao L, Zhu S, Li L, Lou S, Wang H, Wang Q, Tao S, Huang C and Chen C 2016b Chemical characteristics of fine particles and their impact on visibility impairment in Shanghai based on a 1-year period observation; J. Environ. Sci. 48 151–160, https://doi.org/10.1016/j.jes.2016.01.022.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr Imran Girach, Scientist, SPL, VSSC, for his insightful comments on the manuscript. The funding support from the ARFI and ATCTM network projects under the ISRO-GBP is greatly appreciated. SP is grateful to CSIR for the CSIR-SRF fellowship (CSIRAWARD/SRF-DIRECT2021/4309). The authors also thank two anomalous reviewers for their valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Subhasmita Panda: Procedure, data analyses, original draft, editing and review. Srinivas Bikkina: Investigation, data analyses, editing and review. Sudhir Kumar Sharma: Data analyses and assessment. Trupti Das: Methodology, writing, investigation, editing and review, funding acquisition. Boopathy Ramasamy: Supervision, examination, evaluation and proofreading, funding acquisition.

Corresponding author

Correspondence to Boopathy Ramasamy.

Additional information

Communicated by Vijayakumar S Nair

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 481 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, S., Bikkina, S., Sharma, S.K. et al. Chemical characterisation of fine aerosols in a smart city on the east coast of India: Seasonal variability and its impact on visibility impairment. J Earth Syst Sci 132, 30 (2023). https://doi.org/10.1007/s12040-022-02043-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-02043-4

Keywords

Navigation