Skip to main content

Advertisement

Log in

Geochemistry of ~2.08 Ga radiating mafic dyke swarm from the Dharwar Craton, India, and their implications on initiation of the Cuddapah Basin

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

A spectacular chain of radiating mafic dykes with precise Pb–Pb and U–Pb baddeleyite ages (~2087–2080 Ma) are reported from the Dharwar Craton, southern India. These radiating dykes are spatially disposed over an extent of 70,000 km2 and flank the northern and western flanks of the Cuddapah Basin in the Eastern Dharwar Craton. Here, we present the geochemical results of four precisely dated dykes and 15 similar trending dykes (N134ºW–N28ºE), which gives first insight into the geochemical behaviour, mantle source characteristics, and geodynamic history of the mafic magmatic event at ~2.08 Ga. Field observations, mineralogy and textures classify them as fine to coarse-grained dolerites, exhibiting insignificant post-magmatic alterations. Basaltic komatiite to high-Fe tholeiitic character, variation in Mg-number (Mg#) (50–75) and crystallisation trends suggest their primary to evolved nature. Enriched light rare earth element (LREE) patterns, negative Nb–Ti anomalies and moderate Th/Nb values (0.5–0.7) in few samples suggest crustal input in the genesis. Petrogenetic modelling using batch melting equation and elemental proxies (La/Yb, Dy/Yb) indicate derivation of these dykes from a heterogeneous spinel to spinel-garnet lherzolitic source. The study postulates that a mantle plume activity at ~2.08 Ga, led to mantle upwelling, causing domal uplift beneath the Cuddapah Basin and emplacement of the Cuddapah dyke swarm (~2.08 Ga). This magmatism was followed by crustal extension and thinning, supervened by thermal relaxation and subsidence, that ultimately led to the formation of the Cuddapah Basin. Several geophysical surveys also concur a high-density material peculiar to a mafic volcanic province present beneath the southwest Cuddapah Basin. The Cuddapah dyke swarm is coeval with Fort Frances dykes, Cauchon Lake dykes and Lac Esprit dykes of the Superior Craton, but their paleolatitudes and geochemical behaviour do not represent an obvious match for the two cratons. The study highlights the significant role of ~2.08 Ga mafic dyke swarm in the evolution of the Cuddapah Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Absar N, Nizamudheen B M, Augustine S, Managave S and Balakrishnan S 2016 C, O, Sr and Nd isotope systematics of carbonates of Papaghani sub-basin, Andhra Pradesh, India: Implications for genesis of carbonate-hosted stratiform uranium mineralisation and geodynamic evolution of the Cuddapah basin; Lithos 263 88–100.

    Article  Google Scholar 

  • Acharyya S K 2003 The nature of Mesoproterozoic Central Indian Tectonic Zone with exhumed and reworked older granulites; Gondwana Res. 6 197–214.

    Article  Google Scholar 

  • Anand M, Gibson S A, Subbarao K V, Kelley S P and Dickin A P 2003 Early Proterozoic melt generation processes beneath the intra-cratonic Cuddapah Basin, southern India; J. Petrol. 44 2139–2179.

    Article  Google Scholar 

  • Babu N R, Venkateshwarlu M, Shankar Ravi, Nagaraju E and Parashuramulu V 2018 New Paleomagnetic results on ~2367 Ma Dharwar giant dyke swarm, Dharwar Craton, southern India: Implications for Paleoproterozoic continental reconstruction; J. Earth Syst. Sci. 127 3.

    Article  Google Scholar 

  • Babu N R, Nagaraju E, Parashuramulu V and Venkateshwarlu M 2020 Preliminary anisotropy of magnetic susceptibility studies on 2367 Ma Bangalore–Karimnagar giant dyke swarm, southern India: Implications for magma flow; Phys. Earth Planet. Int. 306 106540.

    Article  Google Scholar 

  • Balakrishna S 1979 Some recent geophysical studies in the Cuddapah basin, Proceedings of 3rd Workshop on Status, Problems and Programmes in Cuddapah Basin, Hyderabad, AP, India (Inst. Indian Penn. Geol. Publ.), pp. 22–32.

  • Bhaskar Rao Y J, Sivaram T V, Pantulu G V C, Gopalan K and Naqvi S M 1992 Rb–Sr ages of Late Archaean meta volcanics and granites, Dharwar craton, south India, and evidence for Early Proterozoic thermotectonic event(s); Precamb. Res. 59 145–170.

    Article  Google Scholar 

  • Bhattacharji S 1987 Lineaments and igneous episodes in the evolution of intracratonic Proterozoic basins on the Indian Shield; In: Geological evolution of peninsular India – petrological and structural aspects (ed.) A K Saha, Recent Res. Geol. 13 1–15.

  • Bhattacharji S and Singh R N 1984 Thermo-mechanical structure of the southern part of the Indian shield and its relevance to Precambrian basin evolution; Tectonophys. 105 103–120.

    Article  Google Scholar 

  • Bouhallier H, Chardon D and Choukroune P 1995 Strain pat-terns in Archaean dome and basin structures: The Dharwar craton (Karnataka, south India); Earth Planet Sci. Lett. 135 57–75.

    Article  Google Scholar 

  • Buchan K L, Halls H C and Mortensen J K 1996 Paleomagnetism, U–Pb geochronology, and geochemistry of Marathon dykes, Superior Province, and comparison with the Fort Frances swarm; Can. J. Earth Sci. 33 1583–1595.

    Article  Google Scholar 

  • Buchan K L, Goutier J, Hamilton M A, Ernst R E and Matthews W 2007 Paleomagnetism, U–Pb geochronology and geochemistry of Lac Esprit and other dyke swarms, James Bay area, Quebec, and implications for palaeoproterozoic deformation of the superior province; Can. J. Earth Sci. 44(5) 643–664.

    Article  Google Scholar 

  • Canon-Tapia E and Herrero-Bervera E 2009 Sampling strategies and the anisotropy of magnetic susceptibility of dykes; Tectonophys. 466 3–17.

    Article  Google Scholar 

  • Chadwick B, Vasudev V N and Hegde G V 1997 The Dharwar craton, southern India, and its Late Archaean Plate tectonic setting: Current interpretations and controversies; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 106(4) 249–258.

    Article  Google Scholar 

  • Chadwick B, Vasudev V N and Hegde G V 2000 The Dharwar craton, southern India, interpreted as the result of Late Archean oblique convergence; Precamb. Res. 99 91–101.

    Article  Google Scholar 

  • Chalapathi Rao N V, Miller J A, Gibson S A, Pyle D M and Madhavan V 1999 Precise 40Ar/39Ar dating of the Kotakonda kimberlite and Chelima lamproite, India: Implication as to the timing of mafic dyke swarm activity in the Eastern Dharwar craton; J. Geol. Soc. India 53 425–433.

    Google Scholar 

  • Chalapathi Rao N V, Paton C and Lehmann B 2012 Origin and diamond prospectivity of Mesoproterozoic kimberlites from the Narayanpet field, Eastern Dharwar Craton, southern India: Insights from groundmass mineralogy, bulk-chemistry and perovskite oxybarometry; Geol. J. 47(2–3) 186–212.

    Article  Google Scholar 

  • Chandrakala K, Pandey O P, Mall D M and Sarkar D 2010 Seismic signatures of a Proterozoic thermal plume below southwestern part of the Cuddapah Basin, Dharwar craton, India; J. Geol. Soc. India 76 565–572.

    Article  Google Scholar 

  • Chardon D, Choukroune P and Jayananda M 1996 The southern high grade margin of the Dharwar terrains in the Archaean Dharwar craton (south India); J. Struct. Geol. 18 991–1004.

    Article  Google Scholar 

  • Chardon D, Jayananda M, Chetty T R K and Peucat J J 2008 Precambrian continental strain and shear zone patterns: South Indian case; J. Geophys. Res.-Solid Earth 113(B8) B08402.

    Article  Google Scholar 

  • Chardon D, Jayananda M and Peucat J J 2011 Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of south India, geological and geophysical implications for orogenic plateaux; Geochem. Geophys. Geosyst. 12 1–24.

    Article  Google Scholar 

  • Chatterjee N and Bhattacharji S 2001 Petrology, geochemistry and tectonic settings of the mafic dikes and sills associated with the evolution of the Proterozoic Cuddapah Basin of south India; Proc. Indian Acad Sci. (Earth Planet. Sci.) 110 433–453.

    Article  Google Scholar 

  • Chaudhuri A K, Saha D, Deb G K, Deb S P, Mukherjee M K and Ghosh G 2002 The Purana basins of southern cratonic province of India-a case for Mesoproterozoic fossil rifts; Gondwana Res. 5 22–33.

    Article  Google Scholar 

  • Crawford A R and Compston W 1973 The age of the Cuddapah and Kurnool systems, southern India; J. Geol. Soc. Austr. 19(4) 453–464.

    Article  Google Scholar 

  • Davidson J, Turner S and Plank T 2013 Dy/Dy*: Variations arising from mantle sources and petrogenetic processes; J. Petrol. 54(3) 525–537.

    Article  Google Scholar 

  • Dey S, Nandy J, Choudhary A K, Liu Y and Zong K 2015 Neoarchean crustal growth by combined arc-plume action: Evidence from the Kadiri Greenstone Belt, eastern Dharwar craton, India; Geol. Soc. Lond. Spec. Publ. 389 135–163.

    Article  Google Scholar 

  • Drury S A 1984 A Proterozoic intracratonic basin, dyke swarms and thermal evolution in south India; J. Geol. Soc. India 25 437–444.

    Google Scholar 

  • Ernst R E and Baragar W R 1992 Evidence from magnetic fabric for the flow pattern of magma in the Mackenzine giant radiating dyke swarm; Nature 356 511–513.

    Article  Google Scholar 

  • Ernst R E and Bleeker W 2010 Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: Significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present; Can. J. Earth Sci. 47 695–739.

    Article  Google Scholar 

  • Ernst R E and Srivastava R K 2008 India’s place in the Proterozoic world: Constraints from the Large Igneous Province (LIP) record; In: Indian Dykes: Geochemistry, Geophysics and Geochronology (eds) Srivastava R K, Sivaji C and Chalapathi Rao N V, pp. 41–56.

  • French J E and Heaman L M 2010 U–Pb dating of Paleoproterozoic mafic dyke swarms of the south Indian Shield: Implications for paleocontinental reconstructions and identifying ancient mantle plume events; Precamb. Res. 183 416–441.

    Article  Google Scholar 

  • French J E, Heaman L M, Chacko T and Srivastava R K 2008 1891–1883 Ma Southern Bastar-Cuddapah mafic igneous events, India: A newly recognised large igneous province; Precamb. Res. 160 308–322.

    Article  Google Scholar 

  • Friend C R L and Nutman A P 1991 SHRIMP U–Pb geochronology of the Closepet granite and Peninsula gneisses, Karnataka, South India; J. Geol. Soc. India 32 357–368.

    Google Scholar 

  • Gupta M L, Sharma S R and Sundar A 1991 Heat flow and heat generation in the Archaean Dharwar cratons and implications for the southern Indian Shield geotherm and lithospheric thickness; Tectonophys. 194 107–122.

    Article  Google Scholar 

  • Halls H C 1982 The importance and potential of mafic dyke swarms in studies of geodynamic processes; Geosci. Can. 9 145–153.

    Google Scholar 

  • Halls H C and Heaman L M 2000 The paleomagnetic significance of new U–Pb age data from the Molson dyke swarm, Cauchon Lake area, Manitoba; Can. J. Earth Sci. 37 957–966.

    Article  Google Scholar 

  • Halls H C, Kumar A, Srinivasan R and Hamilton M A 2007 Palaeomagnetism and U–Pb geochronology of eastern trending dykes in the Dharwar craton, India: Feldspar clouding, radiating dyke swarms and position of India at 2.37 Ga; Precamb. Res. 155 47–68.

    Article  Google Scholar 

  • Halls H C, Davis D W, Stott G M, Ernst R E and Hamilton M A 2008 The Paleoproterozoic Marathon Large Igneous Province: New evidence for a 2.1 Ga long-lived mantle plume event along the southern margin of the North American Superior Province; Precamb. Res. 162(3–4) 327–353.

    Article  Google Scholar 

  • Hart S R and Dunn T 1993 Experimental clinopyroxene/melt partitioning of 24 trace elements; Contrib. Mineral. Petrol. 113 1–8.

  • Haxby W F, Turcotte D L and Bird J M 1976 Thermal and mechanical evolution of the Michigan Basin; Tectonophys. 36 57–75.

    Article  Google Scholar 

  • Hirschmann M M, Ghiorso M S, Wasylenki L E, Asimow P D and Stolper E M 1998 Calculation of peridotite partial melting from thermodynamic models of minerals and melts, I. Review of methods and comparison with experiments; J. Petrol. 39 1091–1115.

    Article  Google Scholar 

  • Irvine T N and Baragar W R A 1971 A guide to chemical classification of the common volcanic rocks; Can. J. Earth Sci. 8 523–548.

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat J J and Capdevila R 2006 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints; Precamb. Res. 150(1–2) 1–26.

    Article  Google Scholar 

  • Jayananda M, Peucat J J, Chardon D, Rao B K, Fanning C M and Corfu F 2013a Neoarchean greenstone volcanism and continental growth, Dharwar Craton, southern India: Constraints from SIMS U–Pb zircon geochronology and Nd isotopes; Precamb. Res. 227 55–76.

    Article  Google Scholar 

  • Jayananda M, Tsutsumi Y, Miyazaki T, Gireesh R V, Kapfo K U, Hidaka H and Kano T 2013b Geochronological constraints on Meso and Neoarchean regional metamorphism and magmatism in the Dharwar Craton, southern India; J. Asian Earth Sci. 78 18–38.

    Article  Google Scholar 

  • Jayananda M, Santosh M and Aadhiseshan K R 2018 Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India; Earth Sci. Rev. 181 12–42.

    Article  Google Scholar 

  • Jayananda M, Aadhiseshan K R, Kusiak M A, Wilde S A, Sekhamo K, Santosh M and Gireessh R V 2020 Multi-stage crustal growth and Neoarchean geodynamics in the Eastern Dharwar Craton, southern India; Gondwana Res. 78 228–260.

    Article  Google Scholar 

  • Jensen L S 1976 A new plot for classifying subalkalic volcanic rocks; Ontario Division of Mines, Miscellaneous Paper 66 1–22.

  • Johnson K T M 1998 Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures; Contrib. Mineral. Petrol. 133 60–68.

  • Jung C, Jung S, Hoffer E and Berndt J 2006 Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany; J. Petrol. 47(8) 1637–1671.

    Article  Google Scholar 

  • Kaila K L, Roy Chowdhury K, Reddy P R, Krishna V G, Hari Narain Subbatin S I, Sollogub V B, Chekunov A V, Kharetchko G E, Lazrenko M A and Ilchenko T V 1979 Crustal structure along Kavali–Udipi profile in the Indian peninsular shield from deep seismic sounding; J. Geol. Soc. India 20 307–333.

    Google Scholar 

  • Kale V S, Saha D, Patranabis-Deb S, Sesha Sai V V, Tripathy V and Patil Pillai S 2020 Cuddapah Basin, India: A collage of proterozoic subbasins and terranes; Proc. INSA 86 137–166.

    Google Scholar 

  • Kelemen P B, Shimizu N and Dunn T 1993 Relative depletion of niobium in some arc magmas and the continental crust: Partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle; Earth Planet. Sci. Lett. 120 111–134.

  • Khan T, Sarma D S, Somasekhar V and Ramanaiah S 2019 Geochemistry of the Palaeoproterozoic quartzites of Lower Cuddapah Supergroup, South India: Implications for the palaeoweathering, provenance and crustal evolution; Geol. J. 55(2) 1587–1611.

    Article  Google Scholar 

  • Khanna T C, Subba Rao D V, Bizimis M, Satyanarayanan M, Krishna A K and Sesha Sai V V 2017 ~2.1 Ga intraoceanic magmatism in the Central India Tectonic Zone: Constraints from the petrogenesis of ferropicrites in the Mahakoshal Supracrustal belt; Precamb. Res. 302 1–17.

    Article  Google Scholar 

  • Krapež B, Sarma D S, Mohan M R, McNaughton N J, Rasmussen B and Wilde S A 2020 Tectonostratigraphy of the Late Archean Dharwar Supergroup, Dharwar Craton, India: defining a tectonic history from spatially linked but temporally distinct intracontinental and arc-related basins; Earth Sci. Rev. 102966.

  • Krishna A K, Khanna T C and Mohan K R 2016 Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry; Spectrochim. Acta Part B at. Spectrosc. 122 165–171.

    Article  Google Scholar 

  • Krishna Brahmam N and Dutt N V B S 1992 A meteorite impact theory for the initiation of the Cuddapah (Proterozoic) basin of India; Bull. Indian Geol. Assoc. 25 43–60.

    Google Scholar 

  • Kumar A and Bhalla M S 1983 Paleomagnetics and igneous activity of the area adjoining the southwestern margin of the Cuddapah basin, India; Geophys. J. R. Astron. Soc. 73 27–37.

    Article  Google Scholar 

  • Kumar A, Hamilton M A and Halls H 2012a A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India; Geochem. Geophys. Geosyst. 13, https://doi.org/10.1029/2011GC003926.

  • Kumar A, Nagaraju E, Besse J and Bhaskar Rao Y J 2012b New age, geochemical and Paleomagnetic data on a 2.21 Ga dyke swarm from south India: constraints on Paleoproterozoic reconstruction; Precamb. Res. 220–221 123–138.

    Article  Google Scholar 

  • Kumar A, Nagaraju E, Srinivasa Sarma D and Davis D W 2014 Precise Pb baddeleyite geochronology by the thermal extraction-thermal ionisation mass spectrometry method; Chem. Geol. 372 72–79.

    Article  Google Scholar 

  • Kumar A, Parashuramulu V and Nagaraju E 2015 A 2082 Ma radiating dyke swarm in the Eastern Dharwar Craton, southern India and its implications to Cuddapah basin formation; Precamb. Res. 266 490–505.

    Article  Google Scholar 

  • La Fleche M R, Camire G and Jenner G A 1998 Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada; Chem. Geol. 148 115–136.

    Article  Google Scholar 

  • LaTourrette T, Hervig R L and Holloway J R 1995 Trace element partitioning between amphibole, phlogopite, and basanite melt; Earth Planet. Sci. Lett. 135 13–30.

  • Le Maitre R W 2002 Igneous rocks: A classification and glossary of terms; International Union of Geological Sciences, 252p.

  • Maijerkink A M, Rao D P and Rupke J 1984 Stratigraphic and structural developments of the Cuddapah basin, S.E. India; Precamb. Res. 26 57–104.

    Article  Google Scholar 

  • Manikyamba C and Kerrich R 2012 Eastern Dharwar Craton, India: Continental lithosphere growth by accretion of diverse plume and arc terranes; Geosci. Front. 3 225–240.

    Article  Google Scholar 

  • McKenzie D and O’Nions R K 1991 Partial melt distributions from inversion of rare earth element concentrations; J. Petrol. 32 1021–1091.

  • Meen J K, Rogers J J W and Fullagar P D 1992 Lead isotopic compositions of the Western Dharwar Craton, southern India: Evidence for distinct Middle Archean terranes in a Late Archean craton; Geochim. Cosmochim. Acta 56(6) 2455–2470.

    Article  Google Scholar 

  • Meert J G, Pandit M K, Pradhan V R, Banks J, Sirianni R, Stroud M, Newstead B and Gifford J 2010 Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey; J. Asian Earth Sci. 39 483–515.

    Article  Google Scholar 

  • Mishra D C 2011 Long hiatus in Proterozoic sedimentation in India: Vindhyan, Cuddapah and Pakhal Basins – A plate tectonic model; J. Geol. Soc. India 77(1) 17–25.

    Article  Google Scholar 

  • Mohan M R, Asokan A D and Wilde S A 2020 Crustal growth of the Eastern Dharwar Craton: A Neoarchean collisional orogeny? Geol. Soc. London, Spec. Publ. 489(1) 51–77.

  • Mohan M R, Sarma D S, McNaughton N J, Fletcher I R, Wilde S A, Siddiqui M A, Rasmussen B, Krapez B, Gregory C J and Kamo S L 2014 SHRIMP zircon and titanite U–Pb ages, Lu–Hf isotope signatures and geochemical constraints for ~2.56 Ga granitic magmatism in Western Dharwar Craton, Southern India: evidence for short-lived Neoarchean episodic crustal growth?; Precamb. Res. 243 197–220.

    Article  Google Scholar 

  • Mohanty S 2011 Palaeoproterozoic assembly of the Napier Complex, Southern India and Western Australia: Implications for the evolution of the Cuddapah basin; Gondwana Res. 20(2–3) 344–361.

    Article  Google Scholar 

  • Moyen J F, Nedelec A, Martin H and Jayananda M 2001 Contrasted granite emplacement modes within an oblique crustal section: The Closepet granite, south India; Phys. Chem. Earth (a) 26(4) 295–301.

    Article  Google Scholar 

  • Moyen J F, Martin H, Jayananda M and Auvray B 2003 a Late Archaean granites: A typology based on the Dharwar Craton (India); Precamb. Res. 127 103–123.

    Article  Google Scholar 

  • Murthy Y G K, Babu Rao V, Guptasarma D, Rao J M, Rao M N and Bhattacharji S 1987 Tectonic, petrochemical and geophysical studies of mafic dyke swarms around the Proterozoic Cuddapah Basin, south India; In: Mafic Dyke Swarms; Geol. Assoc. Can. Spec. Paper 34 303–316.

  • Naganjaneyulu K and Harinarayana T 2004 Deep crustal electrical signatures of Eastern Dharwar Craton, India; Gondwana Res. 7 951–960.

    Article  Google Scholar 

  • Nagaraja Rao B K, Rajurkar S T, Ramalingaswamy G and Ravindra Babu B 1987 Stratigraphy, structure and evolution of the Cuddapah basin; In: Purana Basins of Peninsular India (Middle to Late Proterozoic); Geological Society of India, Bangalore, pp. 33–86.

    Google Scholar 

  • Nagaraju E and Parashuramulu V 2019 AMS studies on a 450 km long 2216 Ma dyke from Dharwar craton, India: Implications to magma flow; Geosci. Front. 10 1931–1939.

    Article  Google Scholar 

  • Nagaraju E, Parashuramulu V, Babu N R and Narayana A C 2018a A 2207 Ma radiating mafic dyke swarm from eastern Dharwar craton, Southern India: Drift history through Paleoproterozoic; Precamb. Res. 317 89–100.

    Article  Google Scholar 

  • Nagaraju E, Parashuramulu V, Kumar A and Srinivasa Sarma D 2018b Palaeomagnetism and Geochronological studies on a 450 km long 2216 Ma dyke from the Dharwar craton, southern India; Phys. Earth Planet. Int. 274 222–231.

    Article  Google Scholar 

  • Naqvi S M and Prathap J R 2007 Geochemistry of adakites from Neoarchaean active continental margin of Shimoga schist belt, Western Dharwar Craton, India: Implications for the genesis of TTG; Precamb. Res. 156(1–2) 32–54.

    Article  Google Scholar 

  • Naqvi S M and Rogers J J W 1987 Precambrian Geology of India; Oxford University Press, New York, 223p.

  • Naqvi S M, Divakara Rao V and Narain H 1974 The protocontinental growth of the Indian shield and the antiquity of its rift valleys; Precamb. Res. 1 345–398.

    Article  Google Scholar 

  • Naqvi S M, Mohan M R, Prathap J R and Sarma D S 2009 Adakite–TTG connection and fate of Mesoarchaean basaltic crust of Holenarsipur Nucleus, Dharwar Craton, India; J. Asian Earth Sci. 35(5) 416–434.

    Article  Google Scholar 

  • Nutman A P, Chadwick B, Ramakrishnan M and Viswanatha M N 1992 SHRIMP U–Pb ages of detrital zircon in Sargur supracrustal rocks in western Karnataka, southern India; J. Geol. Soc. India 39(5) 367–374.

    Google Scholar 

  • Padmakumari V M and Dayal A M 1987 Geochronological studies of some mafic dykes around the Cuddapah Basin, South India; Geol. Soc. India Memoir 6 369–374.

    Google Scholar 

  • Parashuramulu V 2017 Age and Paleomagnetism on a radiating dyke swarm in the eastern Dharwar craton, south India: Implications to Cuddapah Basin formation; PhD thesis, Osmania University, Telangana, India.

  • Parashuramulu V, Shankar R, Sarma D S, Nagaraju E and Babu N R 2021 Baddeleyite Pb–Pb geochronology and paleomagnetic poles for ~1.89–1.86 Ga mafic intrusions from the Dharwar craton, India, and their paleogeographic implications; Tectonophys. 805 228789.

    Article  Google Scholar 

  • Patra K, Anand R, Balakrishnan S and Dash J K 2020 Origin of ultramafic-mafic rocks of Mesoarchean Sargur Group, western Dharwar Craton, India: Implications for their probable tectonic setting; J. Earth Syst. Sci. 129 1–29.

    Article  Google Scholar 

  • Pearce T H 1968 A contribution to the theory of variation diagrams; Contrib. Mineral. Petrol. 19 142–157.

    Article  Google Scholar 

  • Pearce J 1996 Sources and settings of granitic rocks; Episodes 19 120–121.

    Article  Google Scholar 

  • Pearce J A 2008 Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust; Lithos 100 14–48.

    Article  Google Scholar 

  • Pearce J A and Cann J R 1973 Tectonic setting of basic volcanic rocks determined using trace element analysis; Earth Planet Sci. Lett. 19 290–300.

    Article  Google Scholar 

  • Peucat J J, Bouhallier H, Fanning C M and Jayananda M 1995 Age of the Holenarsipur greenstone belt, relationships with the surrounding gneisses (Karnataka, south India); J. Geol. 103(6) 701–710.

    Article  Google Scholar 

  • Peucat J J, Jayananda M, Chardon D, Capdevila R, Fanning Marc C, Paquette and Jean-Louis 2013 The lower crust of Dharwar craton, south India: Patchwork of Archean granulitic domains; Precamb. Res. 227 4–29.

    Article  Google Scholar 

  • Piercey S J, Murphy D C, Mortensen J K, Paradis S and Creaser R A 2002 Geochemistry and tectonic significance of alkalic mafic magmatism in the Yukon-Tanana terrane, Finlayson Lake Region, Yukon; Can. J. Earth Sci. 39 1729–1744.

    Article  Google Scholar 

  • Pirajno F 2000 Ore Deposits and Mantle Plumes; Kluwer Academic Publishers, 80p.

  • Pivarunas P F, Meert J G, Pandit M K and Sinha A 2019 Palaeomagnetism and geochronology of mafic dykes from the Southern Granulite Terrane: Expanding the Dharwar craton southward; Tectonophys. 760 4–22.

    Article  Google Scholar 

  • Plank T and Langmuir C H 1998 The chemical composition of subducting sediment and its consequences for the crust and mantle; Chem. Geol. 145(3–4) 325–394.

  • Prasanthi Lakshmi M, Parveen Begum S, Manglik A and Seshu D 2020 Mapping of greenstone belts using aeromagnetic data in Eastern Dharwar Craton, India; Curr. Sci. 118(9) 1420–1431.

    Article  Google Scholar 

  • Radhakrishna B P 1983 Archaean granite–greenstone terrain of the south Indian shield; In: Precambrian of South India (eds) S Naqvi and J J W Rogers, Geol. Soc. India Memoir 4 1–46.

  • Radha Krishna B P and Naqvi S M 1986 Precambrian continental crust of India and its evolution; J. Geol. 94 145–166.

    Article  Google Scholar 

  • Radhakrishna B P and Vaidyanadhan R 1997 Geology of Karnataka; Geol. Soc. India, Bangalore, 353p.

  • Radhakrishna T, Krishnedu N R and Balasubramanian G 2007 Mafic dyke magmatism around the Cuddapah Basin: Age constraints, petrological characteristics and geochemical inference for a possible magma chamber on the southwestern margin of the basin; J. Geol. Soc. India 70 194–206.

    Google Scholar 

  • Ramakrishnan M 2009 Precambrian mafic magmatism in the western Dharwar Craton, southern India; J. Geol. Soc. India 73(1) 101–116.

    Article  Google Scholar 

  • Ramakrishnan M and Vaidyanathan R 2010 Geology of India; Geological Society of India Bangalore, India (Vol. 1, pp. 101–152).

  • Ram Babu H V 1993 Basement structure of the Cuddapah Basin from gravity anomalies; Tectonophys. 223 411–422.

  • Ranjan S, Upadhyay D, Abhinay K and Srikantappa C 2020 Paleoarchean and Neoarchean Tonalite–Trondhjemite–Granodiorite (TTG) and granite magmatism in the Western Dharwar Craton, southern India: Implications for Archean continental growth and geodynamics; Precamb. Res. 340 105630.

    Article  Google Scholar 

  • Rao V V and Reddy P R 2002 A Mesoproterozoic supercontinent: Evidence from the Indian shield; Gondwana Res. 5 63–74.

    Article  Google Scholar 

  • Ravikant V, Shakil H, Chatterjee C, Ji Wei-Qiang and Fu-Yuan Wu 2014 Initiation of the intra-cratonic Cuddapah basin: Evidence from Paleoproterozoic (1995 Ma) anorogenic porphyritic granite in Eastern Dharwar Craton basement; J. Asian Earth Sci. 79 235–245.

    Article  Google Scholar 

  • Robinson J A and Wood B J 1998 The depth of the spinel to garnet transition at the peridotite solidus; Earth Planet Sci. Lett. 164 277–284.

    Article  Google Scholar 

  • Rollinson H 1993 Using geochemical data: Evolution, presentation, interpretation; Longman Scientific and Technical, UK, 344p.

  • Roy S and Rao R U M 2000 Heat flow in the Indian shield; J. Geophys. Res. 105 25,587–25,604.

    Article  Google Scholar 

  • Roy P, Balaram V, Anil Kumar Satyanarayanan M and Gnaneshwar Rao T 2007 New REE and trace element data on kimberlitic reference materials by ICP-MS; Geostandards Newslett. 31 261–273.

    Article  Google Scholar 

  • Roy S, Ray L, Bhattacharya A and Srinivasan R 2008 Heat flow and crustal thermal structure in the Late Archaean Closepet granite batholith, south India; Int. J. Earth Sci. 97 245–256.

    Article  Google Scholar 

  • Russell J K and Nicholls J 1988 Analysis of petrologic hypotheses with Pearce element ratios; Contrib. Mineral. Petrol. 99 25–35.

    Article  Google Scholar 

  • Saha D and Tripathy V 2012 Palaeoproterozoic sedimentation in the Cuddapah Basin, south India and regional tectonics: A review; In: Palaeoproterozoic of India (eds) Mazumder R and Saha D, Geol. Soc. London 365 161–184.

  • Sai V S and Tripathy V 2020 The ‘Great Mesoproterozoic hiatus’ in the Cuddapah Basin, Eastern Dharwar Craton, Southern India: Implications for Eastern Gondwana Tectonics; Indian J. Geosci. 74(4) 433–446.

    Google Scholar 

  • Salters V J and Stracke A 2004 Composition of the depleted mantle; Geochem., Geophys., Geosyst. 5(5).

  • Samal A K, Srivastava R K and Gautam G C 2019 Paleoproterozoic (∼1.88–1.89 Ga) ultramafic–mafic sills, Cuddapah basin, India – revisited: Implications for interaction between mantle plume and metasomatised subcontinental lithospheric mantle; J. Earth Syst. Sci. 128(8) 1–24.

    Article  Google Scholar 

  • Sarma D S, McNaughton N J, Belusova E, Mohan M R and Fletcher I R 2012 Detrital zircon U–Pb ages and Hf-isotope systematics from the Gadag Greenstone Belt: Archean crustal growth in the western Dharwar Craton, India; Gondwana Res. 22(3–4) 843–854.

    Article  Google Scholar 

  • Sarma D S, Parashuramulu V, Santosh M, Nagaraju E and Babu N R 2020 Pb–Pb baddeleyite ages on mafic dyke swarms from the Dharwar Craton: Implications for Paleoproterozoic LIPs and diamond potential of mantle keel; Geosci. Front. 11 2127–2139.

    Article  Google Scholar 

  • Satyanarayanan M, Balaram V, Sawant S S, Subramanyam K S V, Krishna G V, Dasaram B and Manikyamba C 2018 Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry; At. Spectrosc. 39 1–15.

    Article  Google Scholar 

  • Saunders A D, Storey M, Kent R W and Norry M J 1992 Consequences of plume-lithosphere interactions; Geol. Soc. Lond. Spec. Publ. 68 41–60.

    Article  Google Scholar 

  • Sesha Sai V V 2019 Proterozoic magnesian feldspathic magmatism in the Nallamalai Fold Belt, southern India – Petrogenesis of Vellaturu–Ipuru–Nakerikallu (VIN) Arc Magmatic Granites, Eastern Dharwar Craton; J. Geol. Soc. India 93(4).

  • Sesha Sai V V, Tripathy V, Bhattacharjee S and Khanna T C 2017 Paleoproterozoic magmatism in the Cuddapah basin, India; J. Indian Geophys. Union 21 516–525.

    Google Scholar 

  • Shaw D M 1979 Trace element melting models; Phys. Chem. Earth 11 577–586.

  • Shellnutt J G, Hari K R, Liao A C Y, Denyszyn S W and Vishwakarma N 2018 A 1.88 Ga giant radiating mafic dyke swarm across southern India and Western Australia; Precamb. Res. 308 58–74.

    Article  Google Scholar 

  • Sheppard S, Rasmussen B, Wei Zi J, Somashekar V, Srinivasa Sarma D, Ram Mohan M, Krapez B, Simon A W and McNaughton A J 2017 Sedimentation and magmatism in the Paleoproterozoic Cuddapah Basin, India: Consequences of lithospheric extension; Gondwana. Res. 48 153–163.

    Article  Google Scholar 

  • Singh A P and Mishra D C 2002 Tectono sedimentary evolution of the Cuddapah basin and Eastern Ghats mobile belt (India) as Proterozoic collision: Gravity, seismic and geodynamic constraints; J. Geodyn. 33 249–267.

    Article  Google Scholar 

  • Singh A P, Mishra D C, Gupta S B and Prabhakar Rao M R K 2004 Crustal structure and domain tectonics of the Dharwar craton (India): Insight from new gravity data; J. Asian Earth Sci. 23 141–152.

    Article  Google Scholar 

  • Söderlund U, Bleeker W, Demirer K, Srivastava R K, Hamilton M A, Nilsson M, Pesonen L, Samal A K, Jayananda M, Ernst R E and Srinivas M 2019 Emplacement ages of Paleoproterozoic mafic dyke swarms in eastern Dharwar craton, India: Implications for paleo reconstructions and support for a ~30° internal block rotation; Precamb. Res. 329 26–43.

    Article  Google Scholar 

  • Srivastava R K, Hamilton M A and Jayananda M 2011 2.21 Ga large igneous province in the Dharwar craton, India; International symposium on Large igneous provinces Asia, mantle plumes and metallogeny, Ext Abst, Irkutsk, pp. 263–266.

  • Srivastava R K, Samal A K and Gautam G C 2015 Geochemical characteristics and petrogenesis of four Palaeoproterozoic mafic dike swarms and associated large igneous provinces from the eastern Dharwar Craton, India; Int. Geol. Rev. 57(11–12) 1462–1484.

    Article  Google Scholar 

  • Sun S S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; Geol. Soc. London, Spec. Publ. 42(1) 313–345.

  • Swami Nath J, Ramakrishnan M and Viswanatha M N 1976 Dharwar stratigraphic model and Karnataka craton evolution; Rec. Geol. Surv. India 107(2) 149–175.

    Google Scholar 

  • Tauxe L, Gee G S and Staudige H 1998 Flow directions in dykes from anisotropy of magnetic susceptibility data: The bootstrap way; J. Geophys. Res. 103 17,775–17,790.

    Article  Google Scholar 

  • Taylor P N, Chadwick B, Moorbath S, Ramakrishnan M and Viswanatha M N 1984 Petrography, chemistry and isotopic ages of Peninsular Gneiss, Dharwar acid volcanic rocks and the Chitradurga Granite with special reference to the Late Archean evolution of the Karnataka Craton, southern India; Precamb. Res. 23(3–4) 349–375.

    Article  Google Scholar 

  • Wang X, Peng P, Wang C and Yang S 2016 Petrogenesis of the 2115 Ma Haicheng mafic sills from the Eastern North China Craton: Implications for an intra-continental rifting; Gondwana Res. 39 347–364.

    Article  Google Scholar 

  • Weaver B L and Tarney J 1984 Empirical approach to estimating the composition of the continental crust; Nature 310 575–577.

    Article  Google Scholar 

  • Winchester J A and Floyd P A 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements; Chem. Geol. 20 325–343.

    Article  Google Scholar 

  • Yadav P and Sarma D S 2021 Geochemistry of 2.21 Ga giant radiating dyke swarm from the Western Dharwar Craton, India: Implications for petrogenesis and tectonic evolution; Geol. J. 56(7) 3497–3522.

    Article  Google Scholar 

  • Yadav P, Sarma D S and Parashuramulu V 2020 Pb–Pb baddeleyite ages of mafic dykes from the Western Dharwar Craton, Southern India: A window into 2.21–2.18 Ga global mafic magmatism; J. Asian Earth Sci. 191 104221.

    Article  Google Scholar 

  • Zhao J X, McCulloch M T and Korsch R J 1994 Characterisation of a plume-related ∼800 Ma magmatic event and its implications for basin formation in central-southern Australia; Earth Planet. Sci. Lett. 121(3–4) 349–367.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr V M Tiwari, Director, CSIR-NGRI, for his encouragement and permission to publish these results. We sincerely thank Dr Keshav Krishna, M Satyanarayanan and S S Sawant for providing the major and trace element data. The in-house MLP 6406-28 project funds are utilised to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

V Parashuramulu: Carried out fieldwork, geochemical analysis, and write-up of the initial version. Pooja Yadav: Data interpretation and initial and final draft preparation. D Srinivasa Sarma: Contributed to the initial version and overall supervision of the work. N Ramesh Babu: Carried out fieldwork and contributed to the write-up of the initial version.

Corresponding author

Correspondence to D Srinivasa Sarma.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parashuramulu, V., Yadav, P., Sarma, D.S. et al. Geochemistry of ~2.08 Ga radiating mafic dyke swarm from the Dharwar Craton, India, and their implications on initiation of the Cuddapah Basin. J Earth Syst Sci 132, 4 (2023). https://doi.org/10.1007/s12040-022-02014-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-02014-9

Keywords

Navigation