Skip to main content

Advertisement

Log in

Origin of the Neoarchean granites from the southeastern margin of the Western Ghats greenstone belt, Dharwar Craton: Implications for crustal evolution in the Western Dharwar Craton

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The field, crystal size distribution, mineral-chemistry and bulk-rock geochemical study on the felsic magmatic rocks (granite and associated rhyolites) of the Western Ghats belt, Dharwar Craton, has been presented for the first time in this contribution. These Neoarchean felsic magmatic rocks occur as massive plugs and lensoidal bands running for several meters to kilometres, with a general trend of NNW–SSE. These rocks are characterised by the ubiquitous presence of biotite and muscovite and are devoid of amphiboles. These rocks show evidence of textural coarsening but show no evidence of magma mixing or assimilation. The petrogenetic studies indicate that the partial melting of tonalite–trondhjemite–granodiorite (TTG) crust together with a considerable amount of Al-rich sediments has resulted in the peraluminous granitic melt source. This melt, subsequently, was mobilised to shallow crustal levels where it was emplaced along the axial planes of F1 folds before it was erupted on to the surface, giving rise to rhyolites. The similarities in the field, mineralogical and geochemical characteristics amongst ~2.61 Ga old felsic volcanic rocks of the different greenstone belts in the Western Dharwar Craton (WDC) suggest that they were all derived from the partial melting of >3.1 Ga felsic crust with a minor input of metasedimentary units at mid-crustal levels. The felsic volcanic rocks show evidence of emplacement in the active plate boundary, the interior of WDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Almeida J, Dall’Agnol R and Leite A A S 2013 Geochemistry and zircon geochronology of the Archean granite suites of the Rio Maria granite-greenstone terrane, Carajás Province, Brazil; J. South Am. Earth Sci. 42 103–126, https://doi.org/10.1016/j.jsames.2012.10.008.

    Article  Google Scholar 

  • Althoff F, Barbey P and Boullier A M 2000 2.8–3.0 Ga plutonism and deformation in the SE Amazonian craton: The Archaean granitoids of Marajoara (Carajas Mineral Province, Brazil); Precamb. Res. 104 187–206, https://doi.org/10.1016/S0301-9268(00)00103-0.

    Article  Google Scholar 

  • Balakrishnan S, Rajamani V and Hanson G N 1999 U–Pb ages for zircon and titanite from the Ramagiri area, Southern India: Evidence for accretionary origin of eastern Dharwar craton during Late Archean; J. Geol. 107 69–86.

    Article  Google Scholar 

  • Boehnke P, Watson E B, Trail D, Harrison T M and Schmitt A K 2013 Zircon saturation re-revisited; Chem. Geol. 351 324–334, https://doi.org/10.1016/j.chemgeo.2013.05.028.

    Article  Google Scholar 

  • Borah K, Rai S S, Prakasam K S, Gupta S, Priestley K and Gaur V K 2014 Seismic imaging of crust beneath the Dharwar Craton, India, from ambient noise and teleseismic receiver function modelling; Geophys. J. Int. 197 748–767, https://doi.org/10.1093/gji/ggu075.

    Article  Google Scholar 

  • Boraiaha C K, Ugarkar A G, Kerr A C, Chandan R, Manuvachari T and Rajanna S 2018 Geology and geochemistry of metabasalts of Shimoga schist belt, Dharwar Craton: Implications for the late Archean basin development; Arab. J. Geosci. 11 226, https://doi.org/10.1007/s12517-018-3568-5.

    Article  Google Scholar 

  • Boraiaha C K, Ugarkar A G, Padhi J K, Chandan R and Kallapur M V 2020 Genesis of the Late Archean granitoids of the northern part of the Dharwar foreland (Dharwar Craton), south India – insights from field, crystal size distribution, thermobarometry, microgeochemical and bulk-rock geochemical studies; Geochemistry 125688, https://doi.org/10.1016/j.chemer.2020.125688.

  • Bucholz C E and Spencer C J 2019 Strongly peraluminous granites across the Archean–Proterozoic transition; J. Petrol. 60 1299–1348, https://doi.org/10.1093/petrology/egz033.

    Article  Google Scholar 

  • Chadwick B, Vasudev V N and Hegde G V 2000 The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence; Precamb. Res. 99 91–111, https://doi.org/10.1016/S0301-9268(99)00055-8.

    Article  Google Scholar 

  • Chadwick B, Vasudev V N, Hegde G V and Nutman A P 2007 Structure and SHRIMP U/Pb zircon ages of granites adjacent to the Chitradurga Schist Belt: Implications for Neoarchaean Convergence in the Dharwar Craton, Southern India; J. Geol. Soc. India 69 5–24.

    Google Scholar 

  • Chakraborti T M, Ray A and Deb G K 2017 Crystal size distribution analysis of plagioclase from gabbro-anorthosite suite of Kuliana, Orissa, eastern India: Implications for textural coarsening in a static magma chamber; Geol. J. 52 234–248, https://doi.org/10.1002/gj.2752.

    Article  Google Scholar 

  • Chandan Kumar B and Ugarkar A G 2017 Geochemistry of mafic–ultramafic magmatism in the Western Ghats belt (Kudremukh greenstone belt), western Dharwar Craton, India: Implications for mantle sources and geodynamic setting; Int. Geol. Rev. 59 1507–1531, https://doi.org/10.1080/00206814.2017.1278623.

    Article  Google Scholar 

  • Chardon D, Jayananda M, Chetty T R K and Peucat J-J 2008 Precambrian continental strain and shear zone patterns: South Indian case; J. Geophys. Res. 113 B08402, https://doi.org/10.1029/2007JB005299.

    Article  Google Scholar 

  • Chardon D, Jayananda M and Peucat J-J 2011 Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of south India, geological and geophysical implications for orogenic plateaux; Geochem. Geophys. Geosyst. 12 1–24, https://doi.org/10.1029/2010GC003398.

    Article  Google Scholar 

  • Chardon D, Peucat J-J, Jayananda M, Choukroune P and Fanning C M 2002 Archean granite-greenstone tectonics at Kolar (South India): Interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion; Tectonics 21 7-1–7-17, https://doi.org/10.1029/2001TC901032.

  • Ciborowski T J R, MiniBe M J, Kerr A C, Ernst R E, Baragar B and Millar I L 2017 A mantle plume origin for the Palaeoproterozoic Circum-Superior Large Igneous Province; Precamb. Res. 294 189–213.

    Article  Google Scholar 

  • Clemens J D and Wall V J 1981 Origin and crystallisation of some peraluminous (S-type) granitic magmas; Can. Mineral. 19 111–131.

    Google Scholar 

  • Condie K C 2014 How to make a continent: Thirty-five years of TTG research; In: Modern approaches in Solid Earth Sciences, Springer International Publishing, pp. 179–193, https://doi.org/10.1007/978-94-007-7615-9_7.

  • Condie K C, Belousova E, Griffin W L and Sircombe K N 2009 Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra; Gondwana Res. 15 228–242, https://doi.org/10.1016/j.gr.2008.06.001.

  • Deb T and Bhattacharyya T 2018 Interaction between felsic granitoids and mafic dykes in Bundelkhand Craton: A field, petrographic and crystal size distribution study; J. Earth Syst. Sci. 127 1–14, https://doi.org/10.1007/s12040-018-1003-7.

    Article  Google Scholar 

  • Devaraju T C, Huhma H, Sudhakara T L, Kaukonen R J and Alapieti T T 2007 Petrology, geochemistry, model and Sm–Nd ages and petrogenesis of the granitoids of the northern block of the western Dharwar Craton; J. Geol. Soc. India 270 889–911.

    Google Scholar 

  • Devaraju T C, Sudhakara T L, Kaukonen R J, Viljoen R P, Alapieti T T, Ahmed S A and Sivakumar S 2010 Petrology and geochemistry of greywackes from Goa–Dharwar sector, western Dharwar Craton: Implications for volcanoclastic origin; J. Geol. Soc. India 75 465–487, https://doi.org/10.1007/s12594-010-0050-8.

    Article  Google Scholar 

  • Devaraju T C, Viljoen R P, Sawkar R H and Sudhakara T L 2009 Mafic and ultramafic magmatism and associated mineralisation in the Dharwar craton, southern India; J. Geol. Soc. India 73 73–100, https://doi.org/10.1007/s12594-009-0005-0.

    Article  Google Scholar 

  • Dey S and Moyen J F 2020 Archean granitoids of India: Windows into early earth tectonics – an introduction; Geol. Soc. London, Spec. Publ., https://doi.org/10.1144/SP489-2020-155.

  • Dey S, Nandy J, Choudhary A K, Liu Y and Zong K 2013 Neoarchaean crustal growth by combined arc-plume action: evidence from the Kadiri Greenstone Belt, eastern Dharwar craton, India; Geol. Soc. London, Spec. Publ. 389 135–163, https://doi.org/10.1144/SP389.3.

    Article  Google Scholar 

  • Dey S, Pandey U K, Rai A K and Chaki A 2012 Geochemical and Nd isotope constraints on petrogenesis of granitoids from NW part of the eastern Dharwar craton: Possible implications for late Archaean crustal accretion; J. Asian Earth Sci. 45 40–56, https://doi.org/10.1016/j.jseaes.2011.09.013.

    Article  Google Scholar 

  • Drury S A, Holt R W, Van Calsteren P C and Beckinsale R D 1983 Sm–Nd and Rb–Sr ages for Archaean rocks from western Karnataka, South India; J. Geol. Soc. India 24 454–459.

    Google Scholar 

  • Ebadi A and Johannes W 1991 Beginning of melting and composition of first melts in the system Qz–Ab–Or–H2O–CO2; Contrib. Mineral. Petrol. 106 286–295, https://doi.org/10.1007/BF00324558.

    Article  Google Scholar 

  • Eby G N 1992 Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications; Geology 20 641–644, https://doi.org/10.1130/0091-7613(1992)020%3c0641:CSOTAT%3e2.3.CO;2.

    Article  Google Scholar 

  • Feng R and Kerrich R 1992 Geochemical evolution of granitoids from the Archean Abitibi Southern Volcanic Zone and the Pontiac subprovince, Superior Province, Canada: Implications for tectonic history and source regions; Chem. Geol. 98 23–70, https://doi.org/10.1016/0009-2541(92)90090-R.

    Article  Google Scholar 

  • Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J and Frost C D 2001 A geochemical classification for granitic rocks; J. Petrol. 42 2033–2048, https://doi.org/10.1093/petrology/42.11.2033.

    Article  Google Scholar 

  • Frost C D, Frost B R, Kirkwood R and Chamberlain K R 2006 The tonalite-trondhjemite-granodiorite (TTG) to granodiorite-granite (GG) transition in the late Archean plutonic rocks of the central Wyoming Province; Can. J. Earth Sci. 43 1419–1444, https://doi.org/10.1139/E06-082.

    Article  Google Scholar 

  • Gupta S, Rai S S, Prakasam K S, Srinagesh D, Chadha R K, Priestley K and Gaur V K 2003 First evidence for anomalous thick crust beneath Mid-Archean Western Dharwar Craton; Curr. Sci. 84 1219–1226.

    Google Scholar 

  • Henderson D R, Long L E and Barton J 2000 Isotopic ages and chemical and isotopic composition of the Archaean Turfloop Batholith, Pietersburg granite-greenstone terrane, Kaapvaal Craton, South Africa; South Afr. J. Geol. 103 38–46, https://doi.org/10.2113/103.1.38.

    Article  Google Scholar 

  • Henry D J, Guidotti C V and Thomson J A 2005 The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms; Am. Mineral. 90 316–328, https://doi.org/10.2138/am.2005.1498.

    Article  Google Scholar 

  • Hibbard M J 1995 Petrography to petrogenesis; Malcolm J. Hibbard, Google Books, Prentice Hall.

  • Higgins M D 2011 Quantitative petrological evidence for the origin of K-feldspar megacrysts in dacites from Taapaca volcano, Chile; Contrib. Mineral. Petrol. 162 709–723, https://doi.org/10.1007/s00410-011-0620-9.

    Article  Google Scholar 

  • Higgins M D 1996 Crystal size distributions and other quantitative textural measurements in lavas and tuff from Egmont volcano (Mt. Taranaki), New Zealand; Bull. Volcanol. 58 194–204, https://doi.org/10.1007/s004450050135.

    Article  Google Scholar 

  • Janardhan A S, Newton R C and Hansen E C 1982 The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India; Contrib. Mineral. Petrol. 79 130–149, https://doi.org/10.1007/BF01132883.

    Article  Google Scholar 

  • Janardhan A S, Shadakshara Swamy N and Capdevila R 1990 Trace and REE geochemistry of pelites from the Sargur high-grade terrain, southern Karnataka; J. Geol. Soc. India 36 27–35.

    Google Scholar 

  • Jayananda M, Banerjee M, Pant N C, Dasgupta S, Kano T, Mahesha N and Mahabaleswar B 2011 2.62 Ga high-temperature metamorphism in the central part of the Eastern Dharwar Craton: Implications for late Archaean tectonothermal history; Geol. J. 47 213–236, https://doi.org/10.1002/gj.1308.

  • Jayananda M, Chardon D, Peucat J-J and Capdevila R 2006 2.61 Ga potassic granites and crustal reworking in the Western Dharwar Craton, southern India: Tectonic, geochronologic and geochemical constraints; Precamb. Res. 150 1–26, https://doi.org/10.1016/j.precamres.2006.05.004.

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat J J and Fanning C M 2015 Paleo- to Mesoarchean TTG accretion and continental growth, western Dharwar craton, southern India: SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes; Precamb. Res. 268 295–322.

    Article  Google Scholar 

  • Jayananda M, Guitreau M, Tarun Thomas T, Martin H, Aadhiseshan K R, Gireesh R V, Peucat J-J and Satyanarayanan M 2019 Geochronology and geochemistry of Meso- to Neoarchean magmatic epidote-bearing potassic granites, western Dharwar Craton (Bellur–Nagamangala–Pandavpura corridor), southern India: Implications for the successive stages of crustal reworking and cratonization; Geol. Soc. London, Spec. Publ. 489 SP489–2018–125, https://doi.org/10.1144/sp489-2018-125.

  • Jayananda M, Kano T, Peucat J and Channabasappa S 2008 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: Constraints from Nd isotopes and whole-rock geochemistry; Precamb. Res. 162 160–179, https://doi.org/10.1016/j.precamres.2007.07.010.

    Article  Google Scholar 

  • Jayananda M, Moyen J-F, Martin H, Peucat J-J, Auvray B and Mahabaleswar B 2000 Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry; Precamb. Res. 99 225–254, https://doi.org/10.1016/S0301-9268(99)00063-7.

    Article  Google Scholar 

  • Jayananda M, Peucat J-J, Chardon D, Rao B K, Fanning C M M and Corfu F 2013 Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India: Constraints from SIMS U–Pb zircon geochronology and Nd isotopes; Precamb. Res. 227 55–76, https://doi.org/10.1016/j.precamres.2012.05.002.

    Article  Google Scholar 

  • Jayananda M, Santosh M and Aadhiseshan K R 2018 Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India; Earth-Sci. Rev., https://doi.org/10.1016/j.earscirev.2018.03.013.

  • Kamacı Ö and Altunkaynak Ş 2019 Magma chamber processes and dynamics beneath northwestern Anatolia: Insights from mineral chemistry and crystal size distributions (CSDs) of the Kepsut volcanic complex (NW Turkey); J. Asian Earth Sci. 181 103889, https://doi.org/10.1016/j.jseaes.2019.103889.

    Article  Google Scholar 

  • Kerr P F 1977 Optical mineralogy; McGraw Hill Book Company, New York.

  • Krapez B, Sarma S D, Ram Mohan M, McNaughton N J, Rasmussen B and Wilde S 2020 Tectonostratigraphy of the Late Archean Dharwar Supergroup, Dharwar Craton, India: Defining a tectonic history from spatially linked but temporally distinct intracontinental and arc–related basins; Earth Sci. Rev. 201 102966.

    Article  Google Scholar 

  • Krogstad E J, Hanson G N and Rajamani V 1991 U–Pb Ages of zircon and sphene for two gneiss terranes adjacent to the Kolar Schist Belt, South India: Evidence for separate crustal evolution histories; J. Geol. 99 801–815.

    Article  Google Scholar 

  • Kumar A, Rao Y J B, Sivaraman T V and Gopalan K 1996 Sm–Nd ages of Archaean metavolcanics of the Dharwar craton, south India; Precamb. Res. 80 205–216, https://doi.org/10.1016/S0301-9268(96)00015-0.

    Article  Google Scholar 

  • Laurent O, Martin H, Moyen J F and Doucelance R 2014 The diversity and evolution of late-Archean granitoids: Evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5 Ga; Lithos, https://doi.org/10.1016/j.lithos.2014.06.012.

  • Li W X, Li X H and Li Z X 2010 Ca.850 Ma bimodal volcanic rocks in northeastern Jiangxi province, south china: Initial extension during the breakup of Rodinia; Am. J. Sci. 310 951–980, https://doi.org/10.2475/09.2010.08.

    Article  Google Scholar 

  • Luth W C, Jahns R H and Tuttle O F 1964 The granite system at pressures of 4 to 10 kilobars; J. Geophys. Res. 69 759–773, https://doi.org/10.1029/jz069i004p00759.

    Article  Google Scholar 

  • Manikyamba C, Ganguly S, Saha A, Santosh M, Rajanikanta Singh M and Subba Rao D V 2014a Continental lithospheric evolution: Constraints from the geochemistry of felsic volcanic rocks in the Dharwar Craton, India; J. Asian Earth Sci. 95 65–80, https://doi.org/10.1016/j.jseaes.2014.05.015.

    Article  Google Scholar 

  • Manikyamba C, Saha A, Santosh M, Ganguly S, Rajanikanta Singh M, Subba Rao D V and Lingadevaru M 2014b Neoarchaean felsic volcanic rocks from the Shimoga greenstone belt, Dharwar Craton, India: Geochemical fingerprints of crustal growth at an active continental margin; Precamb. Res. 252 1–21, https://doi.org/10.1016/j.precamres.2014.06.014.

    Article  Google Scholar 

  • Marsh B D 1988 Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation – I, Theory; Contrib. Mineral. Petrol. 99 277–291, https://doi.org/10.1007/BF00375362.

    Article  Google Scholar 

  • Middlemost E A K 1994 Naming materials in the magma/igneous rock system; Earth Sci. Rev. 37 215–224, https://doi.org/10.1016/0012-8252(94)90029-9.

    Article  Google Scholar 

  • Miller C F, McDowell S M and Mapes R W 2003 Hot and cold granites: Implications of zircon saturation temperatures and preservation of inheritance; Geology 31 529–532, https://doi.org/10.1130/0091-7613(2003)031%3c0529:HACGIO%3e2.0.CO;2.

    Article  Google Scholar 

  • Mohan M R, Asokan A D and Wilde S A 2020 Crustal growth of the eastern dharwar craton: A neoarchean collisional orogeny?; Geol. Soc. London, Spec. Publ. 51–77, https://doi.org/10.1144/SP489-2019-108.

  • Moyen J F 2011 The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth; Lithos 123 21–36, https://doi.org/10.1016/j.lithos.2010.09.015.

    Article  Google Scholar 

  • Moyen J F, Martin H and Jayananda M 2001 Multi-element geochemical modelling of crust-mantle interactions during late-Archaean crustal growth: The closepet granite (South India); Precamb. Res. 112 87–105, https://doi.org/10.1016/S0301-9268(01)00171-1.

    Article  Google Scholar 

  • Moyen J-F, Mudlappa J, Nedelec A, Martin H, Mahabaleswar B and Auvray B 2003a From the roots to the roof of a granite: The closepet granite of south India; Geol. Soc. India 62 753–768.

    Google Scholar 

  • Moyen J F, Martin H, Jayananda M and Auvray B 2003b Late Archaean granites: A typology based on the Dharwar Craton (India); Precamb. Res. 103–123, https://doi.org/10.1016/S0301-9268(03)00183-9.

  • Mshiu E E and Maboko M A H 2012 Geochemistry and petrogenesis of the late Archaean high-K granites in the southern Musoma–Mara Greenstone Belt: Their influence in evolution of Archaean Tanzania Craton; J. African Earth Sci. 66–67 1–12, https://doi.org/10.1016/j.jafrearsci.2012.03.002.

    Article  Google Scholar 

  • Mukherjee S, Ghosh G, Das K, Bose S and Hayasaka Y 2018 Geochronological and geochemical signatures of the granitic rocks emplaced at the north-eastern fringe of the Eastern Dharwar Craton, South India: Implications for late Archean crustal growth; Geol. J. 53 1781–1801, https://doi.org/10.1002/gj.3007.

    Article  Google Scholar 

  • Nasheeth A, Okudaira T, Horie K, Hokada T and Satish-Kumar M 2016 U–Pb SHRIMP ages of detrital zircons from Hiriyur Formation in Chitradurga greenstone belt and its implication to the Neoarchean evolution of Dharwar craton, south India; J. Geol. Soc. India 87 43–54, https://doi.org/10.1007/s12594-016-0372-2.

    Article  Google Scholar 

  • Nicoli G 2020 Water budget and partial melting in an archean crustal column: Example from the dharwar craton, India; Geol. Soc. London, Spec. Publ. 115–133, https://doi.org/10.1144/SP489-2018-88.

  • Nutman A P, Chadwick B, Krishna Rao B and Vasudev V N 1996 SHRIMP U/Pb zirconages of acid volcanic rocks in the Chitradurga and Sandur groups, and granites adjacent to the Sandur Schist belt, Karnataka; J. Geol. Soc. India 47 153–164.

    Google Scholar 

  • Pahari A, Tang L, Manikyamba C, Santosh M, Subramanyam K S V and Ganguly S 2019 Meso-Neoarchean magmatism and episodic crustal growth in the Kudremukh–Agumbe granite-greenstone belt, western Dharwar Craton, India; Precamb. Res. 323 16–54, https://doi.org/10.1016/j.precamres.2019.01.005.

    Article  Google Scholar 

  • Peccerillo A and Taylor S R 1976 Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey; Contrib. Mineral. Petrol. 58 63–81, https://doi.org/10.1007/BF00384745.

    Article  Google Scholar 

  • Peucat J-J, Bouhallier H, Fanning C M and Jayananda M 1995 Age of Holenarsipurschist belt, relationships with the surrounding gneisses (Karnataka, south India); J. Geol. 103 701–710.

    Article  Google Scholar 

  • Peucat J J, Mahabaleswar B and Jayananda M 1993 Age of younger tonalitic magmatism and granulitic metamorphism in the South Indian transition zone (Krishnagiri area) comparison with older peninsular gneisses from the Gorur-Hassan area; J. Metamorph. Geol. 11 879–888, https://doi.org/10.1111/j.1525-1314.1993.tb00197.x.

    Article  Google Scholar 

  • Prabhakar B C, Jayananda M, Shareef M and Kano T 2009 Synplutonic mafic injections into crystallising granite pluton from Gurgunta area, northern part of Eastern Dharwar Craton: Implications for magma chamber processes; J. Geol. Soc. India 74 171–188, https://doi.org/10.1007/s12594-009-0120-y.

    Article  Google Scholar 

  • Putirka K D 2008 Thermometers and barometers for volcanic systems; Rev. Mineral. Geochem. 69 61–120, https://doi.org/10.2138/rmg.2008.69.3.

    Article  Google Scholar 

  • Raase P, Raith M, Ackermand D and Lal R K 1986 Progressive metamorphism of mafic rocks from Greenschist to Granulite Facies in the Dharwar Craton of South India; J. Geol. 94 261–282.

    Article  Google Scholar 

  • Raith M, Raase P, Ackermand D and Lal R K 1983 Regional geothermobarometry in the granulite facies terrane of South India; Trans. Roy. Soc. Edinb. Earth Sci. 73 221–244, https://doi.org/10.1017/S026359330000969X.

    Article  Google Scholar 

  • Ramachandra H M 2016 Dharwar Craton – a review of regional geology and related evolutionary features; Indian. J. Geosci. 70 1–16.

    Google Scholar 

  • Ramakrishnan M and Harinadha Babu P 1981 Western Ghats Belt; In: Early Precambrian Supracrustals of Southern Karnataka (eds) Swami Nath J and Ramakrishnan M, Geological Survey of India, pp. 147–161.

  • Ramakrishnan M and Vaidyanadhan R 2010 Geology of India; Volume 1, Geological Society of India.

  • Ranjan S, Upadhyay D, Abhinay K and Srikantappa C 2020 Paleoarchean and Neoarchean Tonalite–Trondhjemite–Granodiorite (TTG) and granite magmatism in the Western Dharwar Craton, southern India: Implications for Archean continental growth and geodynamics; Precamb. Res. 340 105630, https://doi.org/10.1016/j.precamres.2020.105630.

    Article  Google Scholar 

  • Rapp R P 1994 Partial melting of metabasalts at 2–7 GPa: Experimental results and implications for lower crustal and subduction zone processes; Mineral. Mag. 58A 760–761, https://doi.org/10.1180/minmag.1994.58a.2.132.

    Article  Google Scholar 

  • Rieder M, Cavazzini G, D’Yakonov Y S, Frank-Kamenetskii V A, Gottardi G, Guggenheim S, Koval P V, Muller G, Neiva A M R, Radoslovich E W, Robert J L, Sassi F P, Takeda H, Weiss Z and Wones D R 1998 Nomenclature of the micas; Clay Miner. 46 586–595, https://doi.org/10.1346/CCMN.1998.0460513.

  • Sarma D S, McNaughton N J, Belusova E, Ram Mohan M and Fletcher I R 2012 Detrital zircon U–Pb ages and Hf-isotope systematics from the Gadag Greenstone Belt: Archean crustal growth in the western Dharwar Craton, India; Gondwana Res. 22 843–854, https://doi.org/10.1016/j.gr.2012.04.001.

    Article  Google Scholar 

  • Singh A P, Mishra D C, Gupta S B and Rao M R K P 2004 Crustal structure and domain tectonics of the Dharwar Craton (India): Insight from new gravity data; J. Asian Earth Sci. 23 141–152, https://doi.org/10.1016/S1367-9120(03)00115-9.

    Article  Google Scholar 

  • Sun S-S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; In: Magmatism in oceanic basins (eds) Saunders A D and Norry M J, Geol. Soc. London, Spec. Publ., pp. 313–345.

  • Swami Nath J and Ramakrishnan M 1981 The Early Precambrian supracrustals of southern Karnataka; Geol. Soc. India Memoir 112 350.

    Google Scholar 

  • Swami Nath J, Ramakrishnan M, Viswanatha M N, Ramakrishnan M and Viswanatha M N N 1976 Dharwar stratigraphic model and Karnataka craton evolution; Geol. Surv. India Rec. 107 149–175.

    Google Scholar 

  • Sylvester P J 1994 Archean Granite Plutons; Dev. Precamb. Geol. 11 261–314, https://doi.org/10.1016/S0166-2635(08)70225-1.

    Article  Google Scholar 

  • Tait J, Zimmermann U, Miyazaki T, Presnyakov S, Chang Q, Mukhopadhyay J and Sergeev S 2011 Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton; Geol. Mag. 148 340–347, https://doi.org/10.1017/S0016756810000920.

    Article  Google Scholar 

  • Taylor P N, Chadwick B, Moorbath S, Ramakrishnan M and Viswanatha M N 1984 Petrography, chemistry and isotopic ages of Peninsular Gneisees, Dharwar acid volcanics and Chitradurga granite with special reference to Archaean evolution of Karnataka craton, Southern India; Precamb. Res. 23 349–375.

    Article  Google Scholar 

  • Trendall A F, De Laeter J R, Nelson D R and Mukhopadhyay D 1997a A precise zircon U–Pb age for the base of the BIF of the Mulaingiri Formation (Bababudan Group, Dharwar Supergroup) of the Karnataka Craton; J. Geol. Soc. India 50 161–170.

    Google Scholar 

  • Trendall A F, de Laeter J R, Nelson D R and Rao Y J B 1997b Further zircon U–Pb age data for the Daginkatte Formation, Dharwar Supergroup, Karnataka Craton; J. Geol. Soc. India 50 25–30.

    Google Scholar 

  • Vasudev V N, Chadwick B, Nutman A P and Hegde G V 2000 Rapid development of the late Archaean Hutti schist belt, Northern Karnataka: Implications of new field data and SHRIMP U/Pb zircon ages, India; J. Geol. Soc. India 55(5) 529–540.

    Google Scholar 

  • Vijaya Kumar K, Ernst W G, Leelanandam C, Wooden J L and Grove M J 2011 Origin of ~2.5 Ga potassic granite from the Nellore Schist Belt, SE India: Textural, cathodoluminescence, and SHRIMP U–Pb data; Contrib; Mineral. Petrol. 162 867–888, https://doi.org/10.1007/s00410-011-0629-0.

    Article  Google Scholar 

  • Watson E B and Harrison T M 1983 Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types; Earth Planet. Sci. Lett. 64 295–304, https://doi.org/10.1016/0012-821X(83)90211-X.

    Article  Google Scholar 

  • Whalen J B, Currie K L and Chappell B W 1987 A-type granites: Geochemical characteristics, discrimination and petrogenesis; Contrib. Mineral. Petrol. 95 407–419, https://doi.org/10.1007/BF00402202.

    Article  Google Scholar 

  • Whalen J B, Percival J A, McNicoll V J and Longstaffe F J 2004 Geochemical and isotopic (Nd–O) evidence bearing on the origin of late- to post-orogenic high-K granitoid rocks in the Western Superior Province: Implications for late Archean tectonomagmatic processes; Precamb. Res. 132 303–326, https://doi.org/10.1016/j.precamres.2003.11.007.

    Article  Google Scholar 

  • Whitney J A and Stormer J C 1977 Two-feldspar geothermometry, geobarometry in mesozonal granitic intrusions: Three examples from the Piedmont of Georgia; Contrib. Mineral. Petrol. 63 51–64, https://doi.org/10.1007/BF00371675.

    Article  Google Scholar 

  • Yang X M 2017 Estimation of crystallisation pressure of granite intrusions; Lithos 286–287 324–329, https://doi.org/10.1016/j.lithos.2017.06.018.

    Article  Google Scholar 

  • Yang X M, Drayson D and Polat A 2019 S-type granites in the western superior province: A marker of archean collision zones; Can. J. Earth Sci. 56 1409–1436, https://doi.org/10.1139/cjes-2018-0056.

    Article  Google Scholar 

  • Zhao J H and Zhou M F 2007 Geochemistry of Neoproterozoic maBc intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle; Precamb. Res. 152 27–47, https://doi.org/10.1016/j.precamres.2006.09.002.

    Article  Google Scholar 

Download references

Acknowledgements

Dr Ram Mohan and Dr Srinivasa Sarma of CSIR-National Geophysical Research Institute, Hyderabad and Dr Sajeev Krishnan of Indian Institute of Science (IISc), Bengaluru, are thanked for extending analytical facilities. Miss G S Anupriya, Mr Sarath Kumar, Mr Saswat Subedit and Mr Prakash Jena were of great help during the fieldwork and sample preparation. Mr Jayant K Padhi is thanked for his help in the preparation of the manuscript. CKB acknowledges the financial support received from the Science and Engineering Research Board (SERB), India, in the form of Early Career Research (ECR) Grant (ECR/2016/001449). The author is grateful to the Head, Department of Geology, Central University of Kerala, for providing infrastructural facilities to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

Chandan Kumar Boraiaha: Field investigation, conceptualisation and visualisation, compilation of data, data interpretation, drafting of manuscript, reviewing, modelling, preparation of the figures and map.

Corresponding author

Correspondence to Chandan Kumar Boraiaha.

Additional information

Communicated by Rajneesh Bhutani

Corresponding editor: Rajneesh Bhutani

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

12040_2022_1976_MOESM1_ESM.pdf

Supplementary figure S1. SiO2 vs. major oxides binary plots. Supplementary figure S2. SiO2 vs. trace elements and select ratios binary plots. Supplementary figure S3(a). Incompatible trace element modelling of the studied granites and rhyolites. Mix* indicates the melt mixture containing 70–90% felsic and 10–30% sedimentary (Al-rich) derived melts (Jayananda et al. 1990, 2015). Supplementary figure 3(b). Incompatible trace element ratios modelling of the studied granites and rhyolites. Mix* indicates the melt mixture containing 70–90% felsic and 10–30% sedimentary (Al-rich) derived melts (Jayananda et al. 1990, 2015). Supplementary figure S4. Primitive mantle normalized multi-element patterns (normalizing values after Sun and McDonough 1989). (PDF 677 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boraiaha, C.K. Origin of the Neoarchean granites from the southeastern margin of the Western Ghats greenstone belt, Dharwar Craton: Implications for crustal evolution in the Western Dharwar Craton. J Earth Syst Sci 131, 240 (2022). https://doi.org/10.1007/s12040-022-01976-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01976-0

Keywords

Navigation