Skip to main content

Advertisement

Log in

Petrogenesis of the late Archean Pillow Basalts from the Chitradurga greenstone belt, Western Dharwar Craton (southern India)

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The well-preserved exposures of pillow basalts from the late Archean (2.7 Ga) Chitradurga greenstone belt (Western Dharwar Craton) have been studied in detail using petrological, bulk-rock geochemical and isotope data. The pillows are compositionally basalts to basaltic andesites, and constituted of actinolite and plagioclase. The pillows show slight to moderately depleted LREE (La/SmN = 0.6−1.03), and nearly flat HREE patterns (Gd/YbN = 1.03−1.17) that are comparable with MORBs, but have an overall depletion in REEs relative to the latter. The trace-element patterns of the pillows on an N-MORB normalized multi-element diagram, however, are broadly comparable with that of Island Arc Basalts. The pillows were perhaps generated during the initiation of an intra-oceanic subduction zone where a depleted upper mantle (MORB-source) was metasomatized with slab-derived aqueous fluids. The pillows show a whole-rock Sm–Nd errorchron age of 2433 ± 400 Ma, which is within error of the previously reported Sm–Nd age of 2747 ± 15 Ma. The Pb–Pb isochron age (2627 ± 82 Ma) of the pillows is much closer to the previously reported Sm–Nd age, and it may also indicate the 2.62 Ga thermal event associated with felsic magmatism in the Western Dharwar Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  • Agrawal S, Guevara M and Verma S P 2008 Tectonic discrimination of basic and ultra basic volcanic rocks through log-transformed ratios of immobile trace elements; Int. Geol. Rev. 50 1057–1079.

    Article  Google Scholar 

  • Anhaeusser C R 2014 Archaean greenstone belts and associated granitic rocks – A review; J. Afr. Earth Sci. 100 684–732.

    Article  Google Scholar 

  • Arculus R J and Johnson R W 1981 Island-arc magma sources: A geochemical assessment of the roles of slab-derived components and crustal contamination; Geochem. J. 15 109–133.

    Article  Google Scholar 

  • Arndt N T 1994 Archean komatiites; In: Archean crustal evolution (ed.) Condie K C, Elsevier, Amsterdam, pp. 11–44.

    Chapter  Google Scholar 

  • Arndt N T 2011 Greenstone belts; In: Encyclopedia of Astrobiology (eds) Gargaud M, Amils R, Quintanilla J C, Cleaves H J (Jim), Irvine W M, Pinti D L and Viso M, Springer, Berlin, Heidelberg, 695p.

  • Chadwick B, Vasudev V N and Hegde G V 2000 The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence; Precamb. Res. 99 91–111.

    Article  Google Scholar 

  • Chardon D and Jayananda M 2008 Three-dimensional field perspective on deformation, flow, and growth of the lower continental crust (Dharwar craton, India); Tectonics 27 B08402.

    Article  Google Scholar 

  • Chardon D, Jayananda M and Peucat J J 2011 Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of south India, geological and geophysical implications for orogenic plateaux; Geochem. Geophys. 12 Q02005.

    Google Scholar 

  • De Wit M J and Ashwal L D 1995 Greenstone belts: What are they?; S. Afr. J. Geol. 98(4) 505–520.

    Google Scholar 

  • Devaraju T C, Viljoen R P, Sawkar R H and Sudhakara T L 2009 Mafic and ultramafic magmatism and associated mineralization in the Dharwar Craton, Southern India; J. Geol. Soc. India 73 73–100.

    Article  Google Scholar 

  • Duraiswami R A, Inamdar M M and Shaikh T N 2013 Emplacement of pillow lavas from the ~2.8 Ga Chitradurga Greenstone Belt, South India: A physical volcanological, morphometric and geochemical perspective; J. Volcanol. Geotherm. Res. 264 134–149.

    Article  Google Scholar 

  • Elliott T, Plank T, Zindler A and White W 1997 Element transport from slab to volcanic front at the Mariana arc; J. Geophys. Res. Atmos. 102 14,991–15,019.

    Article  Google Scholar 

  • Frei R, Rosing M T, Waight T E and Ulfbeck D G 2002 Hydrothermal-metasomatic and tectono-metamorphic processes in the Isua supracrustal belt (West Greenland): A multi-isotopic investigation of their effects on the Earth’s oldest oceanic crustal sequence; Geochim. Cosmochim. Acta 66 467–486.

    Article  Google Scholar 

  • Giri A, Anand R, Balakrishnan S, Dash J K and Sarma D S 2019 Neoarchean magmatism in Shimoga greenstone belt, India: Evidence for subduction-accretion processes in the evolution of the western Dharwar stratigraphy; Lithos 330–331 177–193.

    Article  Google Scholar 

  • Gökten E and Floyd P A 2007 Stratigraphy and geochemistry of pillow basalts within the ophiolitic mélange of the Izmir–Ankara–Erzincan suture zone: Implications for the geotectonic character of the northern branch of Neotethys; Int. J. Earth. Sci. 96 725–741.

    Article  Google Scholar 

  • Gupta S, Jayananda M and Fareeduddin 2014 Tourmaline from the Archean G.R. Halli gold deposit, Chitradurga greenstone belt, Dharwar craton (India): Implications for the gold metallogeny; Geosci. Frontiers 5 877–892.

    Article  Google Scholar 

  • Hokada T, Horie K, Satish Kumar M, Ueno Y, Nasheeth A, Mishima K and Shiraishi K 2013 An appraisal of Archaean supracrustal sequences in Chitradurga Schist Belt, Western Dharwar Craton, Southern India; Precamb. Res. 227 99–119.

    Article  Google Scholar 

  • Horwitz E P, Chiarizia R and Dietz R W 1992 A novel strontium-selective extraction chromatographic resin; Solvent Extr. Ion. Exch. 10 313–316.

    Article  Google Scholar 

  • Hughes J 1973 Spilites, keratophyres, and the igneous spectrum; Geol. Mag. 109 513–527.

    Article  Google Scholar 

  • Humphris S E and Thompson G 1978 Hydrothermal alteration of oceanic basalts by seawater; Geochim. Cosmochim. Acta 42 107–125.

    Article  Google Scholar 

  • Humphris S E, Alt J C, Teagle D A H and Honnorez J J 1998 Geochemical changes during hydrothermal alteration of basement in the stockwork beneath the active TAG hydrothermal mound; Proc. Ocean Drill. Prog. Sci. Results 158 255–276.

    Google Scholar 

  • Irvine T N and Baragar W R A 1971 A guide to the chemical classification of the common volcanic rocks; Can. J. Earth Sci. 8 523–548.

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat J J and Capdevila R 2006 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints; Precamb. Res. 150 1–26.

    Article  Google Scholar 

  • Jayananda M, Tsutsumi Y, Miyazaki T, Gireesh R V, Kapfo K U, Tushipokla, Hidaka H and Kano T 2013 Geochronological constraints on Meso- and Neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India; J. Asian Earth Sci. 78 18–38.

    Article  Google Scholar 

  • Jayananda M, Santosh M and Aadhiseshan K R 2018 Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India; Earth Sci. Rev. 181 12–42.

    Article  Google Scholar 

  • Jayananda M, Aadhiseshan K R, Kusiak M A, Wilde S A, Sekhamo K U, Guitreau M, Santosh M and Gireesh R V 2020 Multi-stage crustal growth and Neoarchean geodynamics in the Eastern Dharwar Craton, southern India; Gondwana Res. 78 228–260.

    Article  Google Scholar 

  • Kelemen P B, Hanghoj K and Greene A R 2014 One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust; Treat. Geochem. 4 749–805.

    Article  Google Scholar 

  • Kerrich R, Polat A, Wyman D and Hollings P 1999 Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province: Implications for Archean mantle reservoirs and greenstone belt genesis; Lithos 46 163–187.

    Article  Google Scholar 

  • Kumar A, Bhaskar Rao Y J, Sivaraman T V and Gopalan K 1996 Sm–Nd ages of Archaean metavolcanics of the Dharwar craton, South India; Precamb. Res. 80 205–216.

    Article  Google Scholar 

  • Le Maitre R W 2002 Igneous rocks – a classification and glossary of terms. Recommendations of the International Union of Geological Sciences; Sub-Commission on the Systematics of Igneous Rocks, Cambridge University Press, 236p.

  • Malviya V P, Arima M, Pati J K and Kaneko Y 2006 Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in the Mauranipur area: Subduction related volcanism in the Archean Bundelkhand craton, Central India; J. Miner. Petrol. Sci. 101 199–217.

    Article  Google Scholar 

  • Manikyamba C, Ganguly S, Saha A, Santosh M, Singh M R and Subba Rao D V 2014 Continental lithospheric evolution: Constraints from the geochemistry of felsic volcanic rocks in the Dharwar Craton, India; J. Asian Earth Sci. 95 65–80.

    Article  Google Scholar 

  • Manikyamba C, Ganguly S, Santosh M and Subramanyam K S V 2017 Volcano sedimentary and metallogenic records of the Dharwar greenstone terranes, India: Window to Archean plate tectonics, continent growth, and mineral endowment; Gondwana Res. 50 38–66.

    Article  Google Scholar 

  • Mazza S E, Stracke A, Gill J B, Kimura J and Kleine T 2020 Tracing dehydration and melting of the subducted slab with tungsten isotopes in arc lavas; Earth Planet Sci. Lett. 530 115942.

    Article  Google Scholar 

  • McDonough W F and Sun S S 1995 The composition of the Earth; Chem. Geol. 120 223–253.

    Article  Google Scholar 

  • Mondal S K, Ripley E M, Li C and Frei R 2006 The genesis of Archean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum craton, India; Precamb. Res. 148 45–66.

    Article  Google Scholar 

  • Mukherjee R, Mondal S K, Frei R, Rosing M T, Waight T E, Zhong H and Kumar G R R 2012 The 3.1 Ga Nuggihalli chromite deposits, Western Dharwar craton (India): Geochemical and isotopic constraints on mantle sources, crustal evolution and implications for supercontinent formation and ore mineralization; Lithos 155 392–409.

    Article  Google Scholar 

  • Mukhopadhyay D and Baral M 1985 Structural Geometry of the Dharwar Rocks; J. Geol. Soc. India 26 547–566.

    Google Scholar 

  • Naqvi S M 1971 The Petrochemistry and Significance of Jogimardi Traps, Chitaldrug Schist Belt, Mysore; Bull. Volcanol. 35 1069–1093.

    Article  Google Scholar 

  • Naqvi S M, Divakara Rao V and Narain H 1978 The primitive crust: Evidence from Indian shield; Precamb. Res. 6 323–345.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1982 Early Proterozoic climates and plate motions inferred from major element chemistry of lutites; Nature 299 715–717.

    Article  Google Scholar 

  • Pearce J A 2008 Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust; Lithos 100 14–48.

    Article  Google Scholar 

  • Peucat J J, Jayananda M, Chardon D, Capdevila R, Fanning C M and Paquette J L 2013 The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean granulitic domains; Precamb. Res. 227 4–28.

    Article  Google Scholar 

  • Polat A 2009 The geochemistry of Neoarchean (ca. 2700 Ma) tholeiitic basalts, transitional to alkaline basalts, and gabbros, Wawa Subprovince, Canada: Implications for petrogenetic and geodynamic processes; Precamb. Res. 168 83–105.

    Article  Google Scholar 

  • Polat A 2013 Geochemical variations in Archean volcanic rocks, southwestern Greenland: Traces of diverse tectonic settings in the early Earth; Geology 41 379–380.

    Article  Google Scholar 

  • Polat A and Hofmann A W 2003 Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland; Precamb. Res. 126 197–218.

    Article  Google Scholar 

  • Polat A and Kerrich R 2000 Archean greenstone belt magmatism and continental growth-mantle evolution connection constraints from Th–U–Nb–REE systematics of the 2.7 Ga Wawa subprovince, Superior province, Canada; Earth Planet. Sci. Lett. 175 41–54.

    Article  Google Scholar 

  • Polat A and Kerrich R 2001 Geodynamic processes, continental growth, and mantle evolution recorded in late Archean greenstone belts of the southern Superior Province, Canada; Precamb. Res. 112 5–25.

    Article  Google Scholar 

  • Polat A, Appel P W U and Fryer B J 2011 An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: Implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth; Gondwana Res. 20 255–283.

    Article  Google Scholar 

  • Polat A, Kerrich R and Wyman D A 1999 Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: Trace element and Nd isotope evidence for a heterogeneous mantle; Precamb. Res. 94 139–173.

    Article  Google Scholar 

  • Polat A, Appel P W U, Frei R, Pan Y, Ordóñez-calderón J C, Fryer B, Hollis J A and Raith J G 2007 Field and geochemical characteristics of the Mesoarchean (∼3075 Ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in supra-subduction oceanic crust; Gondwana Res. 11 69–91.

    Article  Google Scholar 

  • Polat A, Frei R, Appel P W U, Dilek Y, Fryer B, Ordóñez-calderón J C and Yang Z 2008 The origin and compositions of Mesoarchean oceanic crust: Evidence from the 3075 Ma Ivisaartoq greenstone belt, SW Greenland; Lithos 100 293–321.

    Article  Google Scholar 

  • Polat A, Hofmann A W, Munker C, Regelous M and Appel P W U 2003 Contrasting geochemical pattens in the 3.7–3.8 Ga pillow basalt cores and rims, Isua greenstone belt, Southwest Greenland: Implication for postmagmatic alteration process; Geochim. Cosmochim. Acta 67 441–457.

    Article  Google Scholar 

  • Ramakrishnan M and Vaidyanadhan R 2010 Geology of India; Geol. Soc. India, Bangalore.

  • Rao T G and Naqvi S M 1995 Geochemistry, depositional environment and tectonic setting of the BIF’s of the Late Archaean Chitradurga Schist Belt, India; Chem. Geol. 121 217–243.

    Article  Google Scholar 

  • Ross P S and Bédard J H 2009 Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace element discrimination diagrams; Can. J. Earth Sci. 46 823–839.

    Article  Google Scholar 

  • Shervais J W 1982 Ti–V plots and the petrogenesis of modern and ophiolitic lavas; Earth Planet. Sci. Lett. 59 101–118.

    Article  Google Scholar 

  • Sheshadri T S, Chaudhury A, Harinadha Babu P and Chayapathi N 1981 Chitradurga Belt; In: Early Precambrian Supracrustals of Southern Karnataka (eds) Swami Nath J and Ramakrishnan M, Geol. Surv. India Memoir 112 163–198.

  • Shido F, Miyashiro A and Ewing M 1974 Compositional variation in pillow lavas from the Mid-Atlantic Ridge; Mar. Geol. 16 177–190.

    Article  Google Scholar 

  • Stacey J S and Kramers J D 1975 Approximation of terrestrial lead isotope evolution by a two-stage model; Earth Planet. Sci. Lett. 26 207–221.

    Article  Google Scholar 

  • Sun S S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; In: Magmatism in the Ocean Basins (eds) Saunders A D and Norry M J, Geol. Soc. London Spec. Publ. 42 313–345.

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M and Dragusanu G 2000 JNdi1: A neodymium isotope reference in consistency with LaJolla neodymium; Chem. Geol. 168 279–281.

    Article  Google Scholar 

  • Todt W, Cliff R A, Hanser A and Hofmann A W 1993 Re-calibration of NBS lead standards using 202Pb+205Pb double spike; Terra Abstract 5 396.

    Google Scholar 

  • Van Kranendonk M J and Pirajno F 2004 Geochemistry of metabasalts and hydrothermal alteration zones associated with c. 3.45 Ga chert and barite deposits: Implications for the geological setting of the Warrawoona Group, Pilbara Craton, Australia; Geochem. Explor. Env. A. 4 253–278.

    Article  Google Scholar 

  • Yellur D D and Nair R S 1978 Assigning a magmatically defined tectonic environment to Chitradurga metabasalts, India, by geochemical methods; Precamb. Res. 7 259–281.

    Article  Google Scholar 

  • Zheng Y 2019 Geoscience Frontiers Subduction zone geochemistry; Geosci. Frontiers 10 1223–1254.

    Article  Google Scholar 

  • Zheng Y F and Hermann J 2014 Geochemistry of continental subduction-zone fluids; Earth Planets Space 66 93.

    Article  Google Scholar 

Download references

Acknowledgements

Ria Mukherjee wishes to acknowledge IISER Bhopal for financial support to conduct fieldwork and analytical work for this study through an Initiation Research Grant Inst/EES/2018010. The Isotope Geochemistry Lab, University of Copenhagen is acknowledged for analytical support. Sisir Mondal wishes to acknowledge the CEFIPRA Project 6007-1. Lewis Ashwal and William L Griffin are kindly acknowledged for reading the initial draft and providing useful suggestions for significantly improving the manuscript. Two anonymous reviewers are acknowledged for providing constructive criticism that helped to improve the manuscript appreciably.

Author information

Authors and Affiliations

Authors

Contributions

Ruksana Rose: Visualization, data processing and interpretation, writing original draft; Ria Mukherjee: Fieldwork, conceptualization, funding acquisition, supervision and project administration, review and editing manuscript; Sisir K Mondal: Visualization, review and editing manuscript; M Lingadevaru: Fieldwork, review and editing manuscript.

Corresponding author

Correspondence to Ria Mukherjee.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rose, R., Mukherjee, R., Frei, R. et al. Petrogenesis of the late Archean Pillow Basalts from the Chitradurga greenstone belt, Western Dharwar Craton (southern India). J Earth Syst Sci 131, 95 (2022). https://doi.org/10.1007/s12040-022-01818-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01818-z

Keywords

Navigation