Skip to main content
Log in

Multistage evolution of subcontinental lithospheric mantle of northwestern Deccan volcanic province, India: Constraints from the ultramafic xenoliths in alkali magma

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

We report multistage geochemical evolution of off-cratonic subcontinental lithospheric mantle by studying mantle xenoliths hosted in alkali basalts from the northwestern part of the Deccan volcanic province in Kutch. The xenolithic fragments are peridotites, composed of Cr-rich diopside, Mg-rich olivine, orthopyroxene and aluminous spinel. Compositionally, these peridotites belong to type I: Cr-diopside lherzolite group. Primarily they possess protogranular texture, but, secondary textures such as reaction corona are also present. High forsterite content of primary olivine (Fo89–92), high Mg# (>92) in orthopyroxene along with low Cr# (0.09–0.35) and TiO2 content (up to 1.12 wt.%) in spinel indicate their upper mantle origin. Higher values of AlVI/AlIV (0.99–2.4) of primary clinopyroxenes provide evidence for their high-pressure upper mantle origin, consistent with their high Mg#. Clinopyroxene displays light rare-earth element- and mid-rare-earth element-enriched pattern along with pronounced negative spike for Nb, Ta, Ti, Zr and Hf. They record multiple metasomatic imprints; high Ti/Eu (>1500) ratio attests silicate metasomatism whereas negative high-field-strength element anomalies indicate a carbonate metasomatism. Olivine-spinel mantle array trend suggests low degrees of partial melting and melt extraction (1–15 wt.%). The primary mineralogy of peridotite xenoliths affirms that they have been equilibrated at a temperature and pressure range of 786–1159°C and 8–23 kb, respectively. They record high mantle heat flow between 62 and 66 mW m−2, may be interpreted as a consequence of thermal perturbation by additional heat input into a relatively thin mantle lithosphere via upcoming magma(s) due to upwelling of Réunion plume beneath western part of the Indian subcontinent. Summarising we conclude that the lithospheric mantle beneath western India suffered a complex multistage evolutionary history followed by rifting at the end of the Mesozoic era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Arai S 1994 Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation; Chem. Geol. 113 191–204, https://doi.org/10.1016/0009-2541(94)90066-3.

    Article  Google Scholar 

  • Arai S, Abe N and Ishimaru S 2007 Mantle peridotites from the Western Pacific; Gondwana Res. 11 180–199.

  • Ashchepkov I, Ntaflos T, Logvinova A, Spetsius Z, Downes H and Vladykin N 2017 Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems; Geosci. Frontiers 8(4) 775–795.

    Google Scholar 

  • Ballhaus C 1993 Redox states of lithospheric and asthenospheric upper mantle; Contrib. Mineral. Petrol. 114(3) 331–348.

    Google Scholar 

  • Basu A R, Chakrabarty P, Szymanowski D, Ibañez-Mejia M, Schoene B, Ghosh N and Georg R B 2020 Widespread silicic and alkaline magmatism synchronous with the Deccan Traps flood basalts, India; Earth Planet. Sci. Lett. 552 116616.

  • Basu A R, Renne P R, DasGupta D K, Teichmann F and Poreda R J 1993 Early and late alkali igneous pulses and a high-3He plume origin for the Deccan flood basalts; Science 261 902–906.

    Google Scholar 

  • Bertrand P and Mercier J-C C 1985 The mutual solubility of coexisting ortho- and clinopyroxene: Toward an absolute geothermometer for the natural system?; Earth Planet. Sci. Lett. 76 109–122, https://doi.org/10.1016/0012-821X(85)90152-9.

    Article  Google Scholar 

  • Biswas S K 1982 Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin; AAPG Bull. 66 1497–1513.

  • Biswas S K 1987 Regional tectonic framework, structure and evolution of the western marginal basins of India; Tectonophys. 135 307–327.

    Google Scholar 

  • Biswas S K 2005 A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes; Curr. Sci. 88 1592–1600.

    Google Scholar 

  • Biswas S K 2016 Tectonic framework, structure and tectonic evolution of Kutch basin, western India; In: Conference GSI, pp. 129–150, https://doi.org/10.17491/cgsi/2016/105417.

  • Brearley M, Scarfe C M and Fujii T 1984 The petrology of ultramafic xenoliths from Summit Lake, near Prince George, British Columbia; Contrib. Mineral. Petrol. 88 53–63.

    Google Scholar 

  • Brey G and Köhler T 1990 Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers; J. Petrol. 31 1353–1378.

    Google Scholar 

  • Campbell I H and Griffiths R W 1990 Implications of mantle plume structure for the evolution of flood basalts; Earth Planet. Sci. Lett. 99 79–93.

    Google Scholar 

  • Chattopadhaya S, Ghosh B, Morishita T, Nandy S, Tamura A and Bandyopadhyay D 2017 Reaction microtextures in entrapped xenoliths in alkali basalts from the Deccan large igneous province, India: Implications to the origin and evolution; J. Asian Earth Sci. 138 291–305, https://doi.org/10.1016/j.jseaes.2017.01.028.

    Article  Google Scholar 

  • Coltorti M, Beccaluva L, Bonadiman C, Salvini L and Siena F 2000 Glasses in mantle xenoliths as geochemical indicators of metasomatic agents; Earth Planet. Sci. Lett. 183 303–320, https://doi.org/10.1016/S0012-821X(00)00274-0.

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Hinton R W, Siena F and Upton B G J 1999 Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean; J. Petrol. 40 133–165, https://doi.org/10.1093/petroj/40.1.133.

    Article  Google Scholar 

  • Courtillot V, Gallet Y, Rocchia R, Feraud G, Robin E, Hofmann C, Bhandari N and Ghevariya Z 2000 Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province; Earth Planet. Sci. Lett. 182 137–156.

    Google Scholar 

  • Courtillot V and Renne P R 2003 On the ages of flood basalt events Sur l’âge des trapps basaltiques; C. R. Geosci. 335 113–140.

    Google Scholar 

  • Cox K 1983 The Deccan Traps and the Karoo: Stratigraphic implications of possible hot-spot origins. IAVCEI programme and abstracts of XVIII IUGG General Assembly, Hamburg, p. 96.

  • Dasgupta R and Hirschmann M M 2006 Melting in the Earth’s deep upper mantle caused by carbon dioxide; Nature 440(7084) 659–662, https://doi.org/10.1038/nature04612.

    Article  Google Scholar 

  • Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G and Hirschmann M M 2013 Carbon-dioxide-rich silicate melt in the Earth’s upper mantle; Nature 493(7431) 211–215, https://www.nature.com/articles/nature11731.

  • Davis B and Boyd F 1966 The join Mg2Si2O6–CaMgSi2O6 at 30 kilobars pressure and its application to pyroxenes from kimberlites; J. Geophys. Res. 71(14) 3567–3576.

    Google Scholar 

  • Dawson J B 1980 Kimberlites and their xenoliths; Springer, Berlin, 252p.

    Google Scholar 

  • De A 1964 Iron–titanium oxides of the alkali olivine basalts, tholeiites, and acidic rocks of the Deccan Trap series and their significance. In: International Geological Congress 24th Session, vol. 7, pp. 126–138.

  • De Hoog J C M, Gall L and Cornell D H 2010 Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry; Chem. Geol. 270 196–215, https://doi.org/10.1016/j.chemgeo.2009.11.017.

    Article  Google Scholar 

  • Dessai A G, Markwick A, Vaselli O and Downes H 2004 Granulite and pyroxenite xenoliths from the Deccan Trap: Insight into the nature and composition of the lower lithosphere beneath cratonic India; Lithos 78 263–290.

    Google Scholar 

  • Dessai A G, Rock N M R, Griffin B J and Gupta D 1990 Mineralogy and petrology of some xenolith bearing alkaline dykes associated with Deccan magmatism, south of Bombay, India; Eur. J. Min. 2 667–685, https://doi.org/10.1127/ejm/2/5/0667.

    Article  Google Scholar 

  • Downes H 2001 Formation and modification of the shallow sub-continental lithospheric mantle: A review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe; J. Petrol. 42 233–250.

    Google Scholar 

  • Downes H, de Vries C and Wittig N 2015 Hf–Zr anomalies in clinopyroxene from mantle xenoliths from France and Poland: Implications for Lu–Hf dating of spinel peridotite lithospheric mantle; Int. J. Earth Sci. (Geol. Rundsch.) 104 89–102, https://doi.org/10.1007/s00531-014-1074-x.

  • Droop G 1987 A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria; Min. Mag. 51 431–435.

    Google Scholar 

  • Ferracutti G R, Gargiulo M F, Ganuza M L, Bjerg E A and Castro S M 2015 Determination of the spinel group end-members based on electron microprobe analyses; Mineral. Petrol. 109 153–160.

    Google Scholar 

  • Fitzpayne A, Giuliani A, Phillips D, Hergt J, Woodhead J D, Farquhar J, Fiorentini M L, Drysdale R N and Wu N 2018 Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths; Mineral. Petrol. 112 71–84, https://doi.org/10.1007/s00710-018-0573-z.

    Article  Google Scholar 

  • Fodor R, Sial A and Gandhok G 2002 Petrology of spinel peridotite xenoliths from northeastern Brazil: Lithosphere with a high geothermal gradient imparted by Fernando de Noronha plume; J. South Am. Earth Sci. 15(2) 199–214.

    Google Scholar 

  • Frey F A and Prinz M 1978 Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis; Earth Planet. Sci. Lett. 38 129–176.

    Google Scholar 

  • Gasparik T 1984 Experimentally determined stability of clinopyroxene + garnet + corundum in the system CaO–MgO–Al2O3–SiO2; Am. Mineral. 69 1025–1035.

    Google Scholar 

  • Gasparik T 1987 Orthopyroxene thermobarometry in simple and complex systems; Contrib. Mineral. Petrol. 96 357–370, https://doi.org/10.1007/BF00371254.

    Article  Google Scholar 

  • Ghosh B, Mukhopadhyay S, Morishita T, Tamura A, Arai S, Bandyopadhyay D, Chattopadhaya S and Ovung T N 2018 Diversity and evolution of suboceanic mantle: Constraints from Neotethyan ophiolites at the eastern margin of the Indian plate; J. Asian Earth Sci. 160 67–77, https://doi.org/10.1016/j.jseaes.2018.04.010.

    Article  Google Scholar 

  • Goncharov A G and Ionov D A 2012 Redox state of deep off-craton lithospheric mantle: New data from garnet and spinel peridotites from Vitim, southern Siberia; Contrib. Mineral. Petrol. 164 731–745, https://doi.org/10.1007/s00410-012-0767-z.

    Article  Google Scholar 

  • Green D H and Falloon T J 1998 Pyrolite: A ringwood concept and its current expression; In: The earth’s mantle: Composition, structure, and evolution (ed.) Jackson I, Cambridge University Press, Cambridge, pp. 311–378, https://www.cambridge.org/core/books/earths-mantle/pyrolite-a-ringwood-concept-and-its-current-expression/DCD933A05B7C98DDFD1020DEC21E44B1.

  • Green D H and Wallace M E 1988 Mantle metasomatism by ephemeral carbonatite melts; Nature 336(6198) 459.

    Google Scholar 

  • Griffin W, O’Reilly S, Abe N, Aulbach S, Davies R, Pearson N, Doyle B and Kivi K 2003 The origin and evolution of Archean lithospheric mantle; Precamb. Res. 127 19–41.

    Google Scholar 

  • Griffin W L, O’Reilly S Y, Ryan C G, Gaul O and Ionov D A 1998 Secular variation in the composition of subcontinental lithospheric mantle: Geophysical and geodynamic implications. In: Structure and evolution of the Australian continent; Vol. 26, pp. 1–26.

  • Guha D, Das S, Srikarni C and Chakraborty S 2005 Alkali basalt of Kachchh: Its implication in the tectonic framework of Mesozoic of western India; J. Geol. Soc. India 66 599.

    Google Scholar 

  • Hart S R and Dunn T 1993 Experimental cpx/melt partitioning of 24 trace elements; Contrib. Mineral. Petrol. 113 1–8.

    Google Scholar 

  • Hasterok D and Chapman D 2011 Heat production and geotherms for the continental lithosphere; Earth Planet. Sci. Lett. 307 59–70, https://www.sciencedirect.com/science/article/abs/pii/S0012821X11002500.

  • Hawkesworth C J, Cawood P A and Dhuime B 2016 Tectonics and crustal evolution; GSA Today 26 4–11, https://doi.org/10.1130/GSATG272A.1.

    Article  Google Scholar 

  • Hawkesworth C J and Kemp A I S 2006 Evolution of the continental crust; Nature 443 811–817, https://doi.org/10.1038/nature05191.

    Article  Google Scholar 

  • Hellebrand E, Snow J E, Dick H J and Hofmann A W 2001 Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites; Nature 410 677–681.

    Google Scholar 

  • Hirschmann M M 2000 Mantle solidus: Experimental constraints and the effects of peridotite composition; Geochem. Geophys. Geosyst. 1 1042, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2000GC000070.

  • Ionov D 1998 Trace element composition of mantle-derived carbonates and coexisting phases in peridotite xenoliths from alkali basalts; J. Petrol. 39 1931–1941, https://doi.org/10.1093/petroj/39.11-12.1931.

    Article  Google Scholar 

  • Ionov D A, Chazot G, Chauvel C, Merlet C and Bodinier J L 2006 Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: A record of pervasive, multi-stage metasomatism in shallow refractory mantle; Geochim. Cosmochim. Acta 70 1231–1260.

    Google Scholar 

  • Johnson K T M, Dick H J B and Shimizu N 1990 Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites; J. Geophys. Res.: Solid Earth 95 2661–2678, https://doi.org/10.1029/JB095iB03p02661.

  • Karmalkar N R, Duraiswami R A, Rao N C and Paul D K 2009 Mantle-derived mafic-ultramafic xenoliths and the nature of Indian sub-continental lithosphere; J. Geol. Soc. India 73(5) 657.

    Google Scholar 

  • Karmalkar N R, Griffin W L and O’Reilly S Y 2000 Ultramafic xenoliths from Kutch, northwest India: Plume-related mantle samples?; Int. Geol. Rev. 42 416–444, https://doi.org/10.1080/00206810009465090.

    Article  Google Scholar 

  • Karmalkar N, Kale M, Duraiswami R and Jonalgadda M 2008 Magma underplating and storage in the crust-building process beneath the Kutch region, NW India; Curr. Sci. 94(12) 1582–1588.

    Google Scholar 

  • Karmalkar N and Rege S 2002 Cryptic metasomatism in the upper mantle beneath Kutch: Evidence from spinel lherzolite xenoliths; Curr. Sci. 82(9) 1157–1165.

    Google Scholar 

  • Karmalkar N, Rege S, Griffin W and O’Reilly S Y 2005 Alkaline magmatism from Kutch, NW India: Implications for plume–lithosphere interaction; Lithos 81 101–119.

    Google Scholar 

  • Köhler T and Brey G 1990 Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications; Geochim. Cosmochim. Acta 54 2375–2388.

    Google Scholar 

  • Krishnamurthy P, Pande K, Gopalan K and Macdougall J 1988 Upper mantle xenoliths in alkali basalts related to Deccan Trap volcanism; Geol. Soc. India Memoir 10 53–67.

    Google Scholar 

  • Kumar P S, Menon R and Reddy G K 2007 Crustal geotherm in southern Deccan basalt province, India: The Moho is as cold as adjoining cratons; Geol. Soc. Am. Spec. Paper 430 275.

    Google Scholar 

  • Le Bas M J 1989 Nephelinitic and basanitic rocks; J. Petrol. 30(5) 1299–1312.

    Google Scholar 

  • Li X Y, Zheng J P, Sun M, Pan S K, Wang W and Xia Q K 2014 The Cenozoic lithospheric mantle beneath the interior of south China block: Constraints from mantle xenoliths in Guangxi Province; Lithos 210–211 14–26.

    Google Scholar 

  • Longerich H P, Jackson S E and Günther D 1996 Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation; J. Anal. At. Spectrom. 11 899–904.

    Google Scholar 

  • Mandal P 2011 Upper mantle seismic anisotropy in the intra-continental Kachchh rift zone, Gujarat, India; Tectonophys. 509 81–92, https://doi.org/10.1016/j.tecto.2011.05.013.

    Article  Google Scholar 

  • Mandal P 2012 Passive-source seismic imaging of the crust and Upper Mantle beneath the 2001 Mw 7.7 Bhuj Earthquake Region, Gujarat, India; Bull. Seismol. Soc. Am. 102 252–266, https://doi.org/10.1785/0120110116.

    Article  Google Scholar 

  • Mather K A, Pearson D G, McKenzie D, Kjarsgaard B A and Priestley K 2011 Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology; Lithos 125 729–742.

    Google Scholar 

  • Mazzucchelli M, Cipriani A, Hémond C, Zanetti A, Bertotto G W and Cingolani C A 2016 Origin of the DUPAL anomaly in mantle xenoliths of Patagonia (Argentina) and geodynamic consequences; Lithos 248 257–271.

    Google Scholar 

  • McDonough W F and Rudnick R L 1998 Mineralogy and composition of the upper mantle; Rev. Mineral. 37 139–164.

    Google Scholar 

  • McDonough W F and Sun S S 1995 The composition of the earth; Chem. Geol. 120(3–4) 223–253.

    Google Scholar 

  • McKenzie D, Jackson J and Priestley K 2005 Thermal structure of oceanic and continental lithosphere; Earth Planet. Sci. Lett. 233 337–349.

    Google Scholar 

  • McKenzie D and O’nions R 1991 Partial melt distributions from inversion of rare earth element concentrations; J. Petrol. 32 1021–1091.

    Google Scholar 

  • Melluso L, Beccaluva L, Brotzu P, Gregnanin A, Gupta A K, Morbidelli L and Traversa G 1995 Constraints on the mantle sources of the Deccan Traps from the petrology and geochemistry of the basalts of Gujarat State (western India); J. Petrol. 36(5) 1393–1432.

    Google Scholar 

  • Menzies M 1983 Mantle ultramafic xenoliths in alkaline magmas: Evidence for mantle heterogeneity modified by magmatic activity; In: UK volcanic studies group meeting, pp. 92–110.

  • Menzies M A, Halliday A N, Palacz Z, Hunter R H, Upton B G, Aspen P and Hawkesworth C J 1987 Evidence from mantle xenoliths for an enriched lithospheric keel under the Outer Hebrides; Nature 325(6099) 44–47.

    Google Scholar 

  • Miller W G, Holland T J and Gibson S A 2016 Garnet and spinel oxybarometers: New internally consistent multi-equilibria models with applications to the oxidation state of the lithospheric mantle; J. Petrol. 57(6) 1199–1222.

    Google Scholar 

  • Morgan W J 1981 Hotspot tracks and the opening of the Atlantic and Indian oceans; In: The Sea. 7. The oceanic lithosphere (ed.) Emiliani C, Wiley, New York, pp. 443–487.

  • Morimoto N 1988 Nomenclature of pyroxenes; Mineral. Petrol. 39 55–76.

    Google Scholar 

  • Morishita T, Ishida Y, Arai S and Shirasaka M 2005 Determination of multiple trace element compositions in thin (>30 μm) layers of NIST SRM 614 and 616 using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS); Geostand. Geoanal. Res. 29 107–122.

    Google Scholar 

  • Mukherjee A B and Biswas S 1988 Mantle-derived spinel lherzolite xenoliths from the Deccan volcanic province (India): Implications for the thermal structure of the lithosphere underlying the Deccan traps; J. Volcanol. Geotherm. Res. 35 269–276, https://doi.org/10.1016/0377-0273(88)90022-4.

    Article  Google Scholar 

  • Niu Y 1997 Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites; J. Petrol. 38(8) 1047–1074.

    Google Scholar 

  • Nkouandou O F and Temdjim R 2011 Petrology of spinel lherzolite xenoliths and host basaltic lava from Ngao Voglar volcano, Adamawa Massif (Cameroon Volcanic Line, West Africa): Equilibrium conditions and mantle characteristics; J. Geosci. 56 375–387.

    Google Scholar 

  • Norman M D 1998 Melting and metasomatism in the continental lithosphere: Laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia; Contrib. Mineral. Petrol. 130(3–4) 240–255.

    Google Scholar 

  • O'Hara M J, Richardson S W and Wilson G 1971 Garnet-peridotite stability and occurrence in crust and mantle; Contrib. Mineral. Petrol. 32 48–68, https://link.springer.com/article/10.1007/BF00372233.

  • O’Neill H S C 1981 The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer; Contrib. Mineral. Petrol. 77(2) 185–194.

    Google Scholar 

  • O’Reilly S Y and Griffin W L 1985 A xenolith-derived geotherm for southeastern Australia and its geophysical implications; Tectonophys. 111 41–63, https://doi.org/10.1016/0040-1951(85)90065-4.

    Article  Google Scholar 

  • O’Reilly S Y and Griffin W 1988 Mantle metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites; Geochim. Cosmochim. Acta 52(2) 433–447.

  • Pande K, Venkatesan T, Gopalan K, Krishnamurthy P and Macdougall J 1988 40Ar–39Ar ages of alkali basalts from Kutch, Deccan Volcanic Province, India; Geol. Soc. India Memoir 10 145–150.

    Google Scholar 

  • Pandey R, Rao N V C, Pandit D, Sahoo S and Dhote P 2018 Imprints of modal metasomatism in the post-Deccan subcontinental lithospheric mantle: Petrological evidence from an ultramafic xenolith in an Eocene lamprophyre, NW India; Geol. Soc. Spec. Publ. 463 117–136, https://doi.org/10.1144/sp463.6.

    Article  Google Scholar 

  • Parkinson I, Arculus R and Eggins S 2003 Peridotite xenoliths from Grenada, Lesser Antilles Island arc; Contrib. Mineral. Petrol. 146 241–262.

    Google Scholar 

  • Pattanaik J, Demouchy S and Ghosh S 2020 Low hydrogen concentrations in Dharwar cratonic lithosphere inferred from peridotites, Wajrakarur kimberlites field: Implications for mantle viscosity and carbonated silicate melt metasomatism; Precamb. Res. 352 105982, https://doi.org/10.1016/j.precamres.2020.105982.

    Article  Google Scholar 

  • Paul D K, Ray A, Das B, Patil S K and Biswas S K 2008 Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, northwest India; Lithos 102 237–259.

    Google Scholar 

  • Pearce N J, Perkins W T, Westgate J A, Gorton M P, Jackson S E, Neal C R and Chenery S P 1997 A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials; Geostand. Newslett. 21 115–144.

    Google Scholar 

  • Pearson D G, Canil D and Shirey S B 2003 Mantle samples included in volcanic rocks: Xenoliths and diamonds; Treatise Geochem. 2 568, https://doi.org/10.1016/b0-08-043751-6/02005-3.

    Article  Google Scholar 

  • Princivalle F, De Min A, Lenaz D, Scarbolo M and Zanetti A 2014 Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): Petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene; Lithos 188 3–14, https://doi.org/10.1016/j.lithos.2013.10.013.

    Article  Google Scholar 

  • Putirka K D 2008 Thermometers and barometers for volcanic systems; Rev. Mineral. Geochem. 69 61–120, https://doi.org/10.2138/rmg.2008.69.3.

    Article  Google Scholar 

  • Rampone E, Vissers R L M, Poggio M, Scambelluri M and Zanetti A 2010 Melt migration and intrusion during exhumation of the Alboran lithosphere: The Tallante mantle xenolith record (Betic Cordillera, SE Spain); J. Petrol. 51 295–325, https://doi.org/10.1093/petrology/egp061.

    Article  Google Scholar 

  • Ray A, Hatui K, Paul D K, Sen G, Biswas S and Das B 2016 Mantle xenolith-xenocryst-bearing monogenetic alkali basaltic lava field from Kutch basin, Gujarat, western India: Estimation of magma ascent rate; J. Volcanol. Geotherm. Res. 312 40–52.

    Google Scholar 

  • Richards M A, Duncan R A and Courtillot V E 1989 Flood basalts and hot-spot tracks: Plume heads and tails; Science 246 103–107.

    Google Scholar 

  • Rocco I, Zanetti A, Melluso L and Morra V 2017 Ancient-depleted and enriched mantle lithosphere domains in northern Madagascar: Geochemical and isotopic evidence from spinel-to-plagioclase-bearing ultramafic xenoliths; Chem. Geol. 466 70–85, https://doi.org/10.1016/j.chemgeo.2017.05.016.

    Article  Google Scholar 

  • Rudnick R L, Gao S, Ling W-l, Liu Y-s and McDonough W F 2004 Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, north China craton; Lithos 77 609–637.

    Google Scholar 

  • Rudnick R, McDonough W and Chappell B 1993 Carbonatite metasomatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics; Earth Planet. Sci. Lett. 114 463–475, https://doi.org/10.1016/0012-821X(93)90076-L.

    Article  Google Scholar 

  • Rudnick R L, McDonough W F and O’Connell R J 1998 Thermal structure, thickness and composition of continental lithosphere; Chem. Geol. 145 395–411.

    Google Scholar 

  • Salters V and Shimizu N 1988 World-wide occurrence of HFSE-depleted mantle; Geochim Cosmochim. Acta 52 2177–2182.

    Google Scholar 

  • Saxena S K and Eriksson G 1983 Theoretical computation of mineral assemblages in pyrolite and lherzolite; J. Petrol. 24 538–555.

    Google Scholar 

  • Schoene B, Eddy M P, Keller C B and Samperton K M 2021 An evaluation of Deccan Traps eruption rates using geochronologic data; Geochronology 3 181–198.

    Google Scholar 

  • Sen G, Bizimis M, Das R, Paul D K, Ray A and Biswas S 2009 Deccan plume, lithosphere rifting, and volcanism in Kutch, India; Earth Planet. Sci. Lett. 277 101–111.

    Google Scholar 

  • Sen G and Chandrasekharam D 2011 Deccan Traps Flood Basalt Province: An evaluation of the Thermochemical Plume Model; In: Topics in igneous petrology (eds) Ray J, Sen G and Ghosh B, Springer, Dordrecht, https://doi.org/10.1007/978-90-481-9600-5_2.

    Chapter  Google Scholar 

  • Seyler M and Bonatti E 1994 Na, AlIV and AlVI in clinopyroxenes of subcontinental and suboceanic ridge peridotites: A clue to different melting processes in the mantle?; Earth Planet. Sci. Lett. 122 281–289.

    Google Scholar 

  • Shaw C S J and Edgar A D 1997 Post-entrainment mineral–melt reactions in spinel peridotite xenoliths from Inver, Donegal, Ireland; Geol. Mag. 134 771–779, https://doi.org/10.1017/S001675689700784X.

    Article  Google Scholar 

  • Shaw C S J, Heidelbach F and Dingwell D B 2006 The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: The case for ‘metasomatism’ by the host lava; Contrib. Mineral. Petrol. 151(6) 681.

    Google Scholar 

  • Shi L, Francis D, Ludden J, Frederiksen A and Bostock M 1998 Xenolith evidence for lithospheric melting above anomalously hot mantle under the northern Canadian Cordillera; Contrib. Mineral. Petrol. 131 39–53.

    Google Scholar 

  • Shirey S B and Richardson S H 2011 Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle; Science 333 434–436, https://doi.org/10.1126/science.1206275.

    Article  Google Scholar 

  • Shukla A, Bhandari N, Kusumgar S, Shukla P, Ghevariya Z, Gopalan K and Balaram V 2001 Geochemistry and magnetostratigraphy of Deccan flows at Anjar, Kutch; J. Earth Syst. Sci. 110 111–132.

    Google Scholar 

  • Simonetti A, Goldstein S, Schmidberger S and Viladkar S 1998 Geochemical and Nd, Pb, and Sr isotope data from Deccan alkaline complexes – Inferences for mantle sources and plume–lithosphere interaction; J. Petrol. 39 1847–1864.

    Google Scholar 

  • Sprain C J, Renne P R, Vanderkluysen L, Pande K, Self S and Mittal T 2019 The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary; Science 363 866–870.

    Google Scholar 

  • Stern R J 2016 Is plate tectonics needed to evolve technological species on exoplanets?; Geosci. Frontiers 7(4) 573–580, https://doi.org/10.1016/j.gsf.2015.12.002.

    Article  Google Scholar 

  • Stern C R, Kilian R, Olker B, Hauri E H and Kyser T K 1999 Evidence from mantle xenoliths for relatively thin (<100 km) continental lithosphere below the Phanerozoic crust of southernmost South America; Lithos 48 217–235.

    Google Scholar 

  • Su B-X, Zhang H-F, Yang Y-H, Sakyi P A, Ying J-F and Tang Y-J 2012 Breakdown of orthopyroxene contributing to melt pockets in mantle peridotite xenoliths from the Western Qinling, central China: Constraints from in situ LA-ICP-MS mineral analyses; Mineral. Petrol. 104(3) 225–247.

    Google Scholar 

  • Tang Y-J, Zhang H-F, Ying J-F and Su B-X 2013 Widespread refertilization of cratonic and circum-cratonic lithospheric mantle; Earth Sci. Rev. 118 45–68, https://doi.org/10.1016/j.earscirev.2013.01.004.

    Article  Google Scholar 

  • Taylor W 1998 An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite; Neues. Jb. Miner. Abh. 172 381–408, https://doi.org/10.1127/njma/172/1998/381.

    Article  Google Scholar 

  • Wang W and Gasparik T 2001 Metasomatic clinopyroxene inclusions in diamonds from the Liaoning province, China; Geochim. Cosmochim. Acta 65(4) 611–620.

    Google Scholar 

  • Wass S Y 1979 Multiple origins of clinopyroxenes in alkali basaltic rocks; Lithos 12 115–132, https://doi.org/10.1016/0024-4937(79)90043-4.

    Article  Google Scholar 

  • Webb S A C and Wood B J 1986 Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio; Contrib. Mineral. Petrol. 92 471–480, https://doi.org/10.1007/BF00374429.

    Article  Google Scholar 

  • Wells P R 1977 Pyroxene thermometry in simple and complex systems; Contrib. Mineral. Petrol. 62 129–139.

    Google Scholar 

  • Whitney D L and Evans B W 2010 Abbreviations for names of rock-forming minerals; Am. Mineral. 95(1) 185–187.

    Google Scholar 

  • Witt-Eickschen G and Seck H A 1991 Solubility of Ca and Al in orthopyroxene from spinel peridotite: An improved version of an empirical geothermometer; Contrib. Mineral. Petrol. 106 431–439, https://doi.org/10.1007/BF00321986.

    Article  Google Scholar 

  • Wyman D and Kerrich R 2010 Mantle plume–volcanic arc interaction: Consequences for magmatism, metallogeny, and cratonization in the Abitibi and Wawa subprovinces, Canada; Can. J. Earth Sci. 47 565–589, https://doi.org/10.1139/E09-049.

    Article  Google Scholar 

  • Xu Y 2000 Distribution of trace elements in spinel and garnet peridotites; Sci. China Ser. D 43(2) 166–175.

    Google Scholar 

  • Xu Y, Sun M, Yan W, Liu Y, Huang X and Chen X 2002 Xenolith evidence for polybaric melting and stratification of the upper mantle beneath south China; J. Asian Earth Sci. 20 937–954.

    Google Scholar 

  • Zangana N A, Downes H, Thirlwall M F, Marriner G F and Bea F 1999 Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central): Implications for the composition of the shallow lithospheric mantle; Chem. Geol. 153 11–35, https://doi.org/10.1016/S0009-2541(98)00150-8.

    Article  Google Scholar 

  • Zheng J 2009 Comparison of mantle-derived materials from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton; Chin. Sci. Bull. 54 3397.

    Google Scholar 

  • Zheng J, Griffin W, O’Reilly S Y, Yu C, Zhang H, Pearson N and Zhang M 2007 Mechanism and timing of lithospheric modification and replacement beneath the eastern north China craton: Peridotitic xenoliths from the 100 Ma fuxin basalts and a regional synthesis; Geochim. Cosmochim. Acta 71 5203–5225.

    Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to the guest editors for their invitation to contribute to this special volume. This study is part of the doctoral research (PhD) programme of the first author, supported by the University of Calcutta Research Fellowship. The fieldwork was partly funded with UGC-DRS grant, Phase-II, 2013–2018, Government of India. The authors thankfully acknowledge the anonymous reviewer for his insightful comments that improved the quality of the manuscript. Support received from Dr Debojit Talukdar at different stages of preparation of this manuscript is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SC and BG conceptualised the problem. First three authors carried out the fieldwork. SC wrote the draft manuscript. SC and BG collected and interpreted data. SC and DB drafted figures. SC, MK, AD and SR attended the revision. All authors read and finalised the manuscript.

Corresponding author

Correspondence to Biswajit Ghosh.

Additional information

Communicated by N V Chalapathi Rao

This article is part of the Topical Collection: Deccan Traps and other Flood Basalt Provinces – Recent Research Trends.

Supplementary materials pertaining to this article are available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhaya, S., Ghosh, B., Bandyopadhyay, D. et al. Multistage evolution of subcontinental lithospheric mantle of northwestern Deccan volcanic province, India: Constraints from the ultramafic xenoliths in alkali magma. J Earth Syst Sci 131, 53 (2022). https://doi.org/10.1007/s12040-021-01793-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01793-x

Keywords

Navigation