Skip to main content
Log in

Palynological and organic geochemical studies of the middle Eocene Siju Formation of Garo Hills, Meghalaya, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Detailed palynological and organic geochemical analysis of middle Eocene marlstones from the Siju Formation, Garo Hills of Meghalaya, were undertaken. All marl samples contained abundant organic wall dinoflagellate cysts and a few number of spores-pollen grains, foraminiferal linings and calcareous foraminifera. The palynological assemblage consists of 21 genera and 35 species with fungal remains. The occurrence of palynofloral assemblage indicates the prevalence of tropical–subtropical with humid climatic conditions. The deposition environment of the Siju Formation has been interpreted as the neritic setting. Organic matter is thermally immature representing type III–type IV kerogen with low total organic carbon (<0.72%). The biomarkers suggest microbial degradation of both reworked and terrestrial organic matter. Occurrence of polycyclic aromatic hydrocarbons indicate charred biomass transported from the land.

Research Highlights

  1. 1.

    An integrated study of palynology and organic geochemistry was carried out in the middle Eocene of the Siju Formation of Garo Hills, Meghalaya.

  2. 2.

    Dinoflagellate cysts and spores, and pollen grains suggested that the Siju Formation has tropical-subtropical and neritic settings.

  3. 3.

    The biomarkers indicated microbial degradation of both reworked and terrestrial organic matter.

  4. 4.

    Rock-Eval pyrolysis and total organic carbon (TOC) analysis suggested the thermal maturity and type of kerogen

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ageta H, Shiojima K and Arai Y 1987 Acid-induced rearrangement of triterpenoidhydrocarbons belonging to the hopane and migrated hopane series; Chem. Pharm. Bull. 35 2705–2716.

    Article  Google Scholar 

  • Bechtel A, Gawlick H J, Gratzer R, Tomaselli M and Püttmann W 2007 Molecular indicators of palaeosalinity and depositional environment of small scale basins within carbonate platforms: The Late Triassic Hauptdolomite Wiestalstausee section near Hallein (Northern Calcareous Alps, Austria); Org. Geochem. 38 92–111.

    Article  Google Scholar 

  • Biswas B 1962 Stratigraphy of the Mahadeo, Langpar, Cherra and Tura formations, Assam; Bull. Geol. Min. Metallur. Soc. India 25 1–48.

  • Brassell S C, Comet P A, Eglinton G, McEvoy J, Maxwell J R, Quirke J M E and Volkman J K 1980 Preliminary lipid analyses of cores 14, 18 and 28 from Deep Sea Drilling Project Hole 416A; In: Initial Reports of the Deep Sea Drilling Project (eds) Lancelot Y and Winterer E L et al., US Govt. Printing Office, Washington 50 647–664.

  • Brassell S C, McEvoy J, Hoffmann C F, Lamb N A, Peakman T M and Maxwell J R 1984 Isomerisation, rearrangement and aromatisation of steroids in distinguishing early stages of diagenesis; Org. Geochem. 6 11–23.

    Article  Google Scholar 

  • Brinkhuis H 1994 Late Eocene to early Oligocene dinoflagellate cysts from the Priabonian type area (northeast Italy): Biostratigraphy and palaeoenvironmental interpretation; Palaeogeogr. Palaeoclimatol. Palaeoecol. 107 121–163.

    Article  Google Scholar 

  • Chaemsaia S, Kunanopparat T, Srichumpuang J, Nopharatana M, Tangduangdee C and Siriwattanayotin S 2016 Reduction of the polycyclic aromatic hydrocarbon (PAH) content of charcoal smoke during grilling by charcoal preparation using high carbonisation and a preheating step; J. Food Addit. Contam. 33(3) 385–390.

    Article  Google Scholar 

  • Chakraborty A and Baksi S K 1972 Stratigraphy of the Cretaceous–Tertiary sedimentary sequence, south-west of Shillong Plateau; Quart. J. Geol. Min. Metallur. Soc. India 44 109–127.

    Google Scholar 

  • Chattopadhyay A and Dutta S 2014 Higher plant biomarker signatures of Early Eocene sediments of northeastern India; Mar. Petrol. Geol. 57 51–67.

    Article  Google Scholar 

  • Crouch E M and Brinkhuis H 2005 Environmental change across the Palaeocene–Eocene transition from eastern New Zealand: A marine palynological approach; Mar. Micropalaeontol. 56 138–160.

    Article  Google Scholar 

  • Damsté J S S, Schouten S and Volkman J K 2014 C27–C30 neohop-13(18)-enes and their saturatedand aromatic derivatives in sediments: Indicators for diagenesisand water column stratification; Geochim Cosmochim. Acta 133 402–421.

    Article  Google Scholar 

  • Dzepina K, Arey J, Marr L C, Worsnop D R, Salcedo D, Zhang Q, Onasch T B, Molina L T, Molina M J and Jimenez J L 2007 Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer; Int J. Mass Spectr. 263 152–170.

    Article  Google Scholar 

  • Edwards L E and Andrle V A S 1992 Distribution of selected dinoflagellate cysts in modern marine sediments; In: Neogene and Quaternary Dinoflagellate Cysts and Acritarchs (eds) Head M J and Wrenn J H, American Association of Stratigraphic Palynologists Foundation, Dallas, pp. 259–288.

    Google Scholar 

  • Evitt W R 1985 Sporopollenin dinoflagellate cysts: Their morphology and interpretation; American Association of Palynologists Foundation, Dallas, 333p.

  • Fensome R A and Williams G L 2004 The Lentin and Williams Index of fossil dinoflagellates; AASP Contr. Ser. 42 1–909.

    Google Scholar 

  • Fensome R A, Williams G L and Mac Rae R A 2009 Late Cretaceous and Cenozoic fossils dinoflagellate and other palynomorphs from the Scotian margin, offshore eastern Canada; J. Syst. Palaeontol. 7(1) 1–79.

    Article  Google Scholar 

  • Fox C S 1937 Hidden coalfields of the Garo Hills, Assam, Director’s General report; A.M. Rec. Geol. Surv. 72(1) 40–41.

    Google Scholar 

  • Galazzo F B, Thomas E, Pagani M, Warren C, Luciani V and Giusberti L 2014 The middle Eocene climatic optimum (MECO): A multiproxy record of paleoceanographic changes in the southeast Atlantic (OPD Site 1263, Walvis Ridge); Paleoceanography 29, https:doi.org/https://doi.org/10.1002/2014PA002670

  • Garel S, Quesnel F, Jacob J, Roche E, Milbeau Le, Claude Dupuis C, Boussafir M, Baudin F and Schnyder J 2014 High frequency floral changes at the Paleocene–Eocene boundary revealed by comparative biomarker and palynological studies; Org. Geochem. 77 43–58.

    Article  Google Scholar 

  • GSI 2009 Geology and mineral resources of Meghalaya; Geol. Surv. India Misc. Publ. 30(IV) 1–46.

    Google Scholar 

  • Harland R 1983 Distribution maps of recent dinoflagellate in bottom sediments from the North Atlantic Ocean and adjacent seas; Palaeontology 26 321–387.

    Google Scholar 

  • Iakovleva A I 2015 Middle-late Eocene dinoflagellate cysts from NE Ukraine (Borehole No. 230, Dnepr-Donets Depression): Stratigraphic and palaeoenvironmental approach; Acta Palaeobotanica 55(1) 19–51.

  • Jiang K, Lin C, Zhang X, Cai C, Xiao F, He W and Peng L 2018 Variations in abundance and distribution of methyltrimethyltridecylchromans (MTTCs) in sediments from saline lacustrine settings in Cenozoic lacustrine basins, China; Org. Geochem. 121 58–67.

    Article  Google Scholar 

  • Khanolkar S, Saraswati P K and Rogers K 2017 Ecology of foraminifera during the middle Eocene climatic optimum in Kutch, India; Geodyn Acta 29 181–193.

    Article  Google Scholar 

  • Khanolkar S and Sharma J 2019 Record of Early to Middle Eocene paleoenvironmental changes from lignite mines, western India; J. Micropalaeontol. 38(1) 1–24.

    Article  Google Scholar 

  • Kishore S, Singh A P, Jauhri A K, Misra P K, Singh S K and Lyngdoh B C 2007 Coralline algae from the Prang Formation (Eocene) of the South Khasi Hills, Meghalaya India; Revue De Paléobiologie, Genève 26(2) 615–623.

    Google Scholar 

  • Lafargue E, Marquis F and Pillot D 1998 Rock–Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies; Revue De L’Institut Français Du Pétrole 53 421–437.

    Article  Google Scholar 

  • Marynowski L, Kubik R, Dieter U and Simoneit B R T 2014 Molecular composition of fossil charcoal and relationship with incomplete combustion of wood; Org. Geochem. 77 22–31.

    Article  Google Scholar 

  • Misra P K, Jauhri A K, Tiwari R P, Kishore S, Singh A P and Singh S K 2011 Coralline Algae from the Prang Formation (Middle–Late Eocene) of the Lumshnong Area, Jaintia Hills Meghalaya; J. Geol. Soc. India 78 355–364.

    Article  Google Scholar 

  • Paul S, Sharma J, Singh B D, Saraswati P K and Dutta 2015 Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequenceof Cambay Basin, western India; Int J. Coal Geol. 149 77–92.

    Article  Google Scholar 

  • Pearson P N, Ditchfield P W, Singano J, Harcourt-Brown K G, Nicholas C J, Olsson R K, Shackleton N J and Hall M A 2001 Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs; Nature 413 481–487.

    Article  Google Scholar 

  • Peters K E 1986 Guidelines for evaluating petroleum source rock using programmed pyrolysis; Amer. Assoc. Petrol. Geol. Bull. 70(3) 318–329.

    Google Scholar 

  • Peters K E, Walters C C and Moldowan J M 2005 The Biomarker Guide (II), Biomarkers and Isotopes in Petroleum Exploration and Earth History; Cambridge University Press, Cambridge, pp. 475–1155.

  • Powell A J, Brinkhuis H and Bujak J P 1996 Upper Palaeocene–lower Eocene dinoflagellate cyst sequence biostratigraphy of southeast England; In: Correlation of the Early Palaeogene in Northwest Europe (eds) Knox R W O B, Corfield R M and Dunay R S, Geol. Soc. Spec. Publ. 101 145–183.

  • Pröss J and Brinkuis H 2005 Organic-walled dinoflagellate cysts as palaeoenvironmental indicators in the Palaeogene; a synopsis of concepts; Paläontologische Zeitschrift 79(1) 53–59.

    Article  Google Scholar 

  • Rudra A, Dutta S and Raju S V 2014 Molecular composition and paleobotanical origin of Eocene resin from northeast India; J. Earth Syst. Sci. 123 935–941.

    Article  Google Scholar 

  • Rudra A, Dutta S and Raju S V 2017 The Paleogene vegetation and petroleum system in the tropics: A biomarker approach; Mar. Petrol. Geol. 86 38–51.

    Article  Google Scholar 

  • Saxena R K and Sarkar S 2000 Palynological investigation of the Siju Formation (Middle Eocene) in the type area, South Garo Hills, Meghalaya India; Palaeobotanist 49 253–267.

    Google Scholar 

  • Sarkar S, Saxena R K and Sarkar S 2014 Palynology of the Eocene sediments of the West Garo Hills, Meghalaya, NE India: Biostratigraphic and Palaeoenvironmental implications; J. Palaeontol. Soc. India 59(2) 199–212.

    Google Scholar 

  • Sharma J and Saraswati P K 2015 Lignites of Kutch, western India: Dinoflagellate biostratigraphy and palaeoclimate; Revue De Micropaléontologie 58 107–119.

    Article  Google Scholar 

  • Sluijs A, Pross J and Brinkhuis H 2005 From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene; Earth-Sci. Rev. 68 281–315.

    Article  Google Scholar 

  • Srivastava D K and Garg R 2014 Record of Eupatagus L Agassiz, 1847 (Echinoidea) from the Siju Formation, Garo Hills, Meghalaya India; J. Palaeontol. Soc. India 59(2) 227–230.

    Google Scholar 

  • Vonhof H B, Brinkhuis H, Van de Hoeven M, Smit J, Montanari A and Nederbragt A J 2000 Global cooling accerlerated by early late Eocene impacts; Geology 28 687–690.

    Article  Google Scholar 

  • Wall D, Dale B, Lohmann G P and Smith W K 1977 The environmental and climatic distribution of dinoflagellate cysts in the North and South Atlantic and adjacent seas; Mar. Micropalaeontol. 30 319–343.

    Google Scholar 

  • Williams G L, StoverL E and Kidson E J 1993 Morphology and stratigraphic ranges of selected Mesozoic–Cenozoic dinoflagellate taxa in the Northern Hemisphere; Geol. Surv. Canada 92 1–137.

    Google Scholar 

  • Williams G L, Brinkhuis M A, Pearce M A, Fensome RA and Weegink J W 2019 Southern ocean and global dinoflagellate cyst events compared: Index events for the Late Cretaceous-Neogene; In: Proceedings of the Ocean Drilling Program (eds) Exon N F, Kennett J P and Malone M J; Sci. Results 189 1–98.

  • Zachos J C, Dickens G R and Zeebe R E 2008 An early Cenozoic perspective on greenhouse warming and Carbon-cycle dynamics; Nature 451 279–283, https://doi.org/10.1038/nature06588.

    Article  Google Scholar 

  • Zachos J C, McCarren H K, Murphy B, Röhl U and Westerhold T 2010 Tempo and scale of the late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals; Earth Planet. Sci. Lett. 299(1–2) 242–249.

    Article  Google Scholar 

Download references

Acknowledgements

YRS would like to acknowledge the Science and Research Board, Government of India (Grant No. EEQ/2016/000062) and Indian National Science Academy, New Delhi (INSA/SP/VS-27/2017-2018/518) for financial support. YRS and SPS acknowledge to the ONGC, India for supporting to carry out Rock–Eval analysis. The authors are grateful to Dr Robert A Fensome (Natural Resources Canada, Geological Survey of Canada) and Dr Przemyslaw Gedl (Polish Academy of Sciences, Institute of Geological Sciences, Research Centre in Cracow) for helping identification of dinoflagellate cysts and Mr Sumit, Dr Anuradha, Research Scholars of IIT, Mumbai for their valuable support during organic geochemical analysis. We also are thankful to W Ajoykumar Singh, T Ngathoi Chanu and N Sanjit Singh for help during sample analysis.

Author information

Authors and Affiliations

Authors

Contributions

Prof Y Raghumani Singh collected samples, identified palynological assemblages, prepared and revised the manuscript. Prof Suryendu Dutta and Dr Arka Rudra participated in the result interpretation of the biomarker, revised, and provided inputs for improvement. Sh Priyokumar Singh performed the measurements, collected the samples, literature review, and preparation of palynological slides. M Sapana Devi and N Reshma Devi supported chemical analysis and preparation of slides.

Corresponding author

Correspondence to Y Raghumani Singh.

Additional information

Communicated by Pratul K Saraswati

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, Y.R., Rudra, A., Singh, S. et al. Palynological and organic geochemical studies of the middle Eocene Siju Formation of Garo Hills, Meghalaya, India. J Earth Syst Sci 131, 19 (2022). https://doi.org/10.1007/s12040-021-01760-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01760-6

Keywords

Navigation