Skip to main content
Log in

Landform evolution of Tharsis Montes and Olympus Mons of Mars: Insights from morphometric, hypsometric and chronologic evidences

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

We studied the growth and evolutionary history of four major volcanoes of the Tharsis Province based on morphometry, age and hypsometric studies. Shield volcanoes of Tharsis volcanic province demonstrate marginally dissimilar landform evolutionary trends. Arsia Mons is distinct with a single caldera of large diameter and showed the highest asymmetry in the apron development. A convex hypsometric curve of Arsia Mons indicates tectonic dominance in its evolution. Olympus Mons, on the other hand, is concave in shape, suggesting an erosion dominated landform. Olympus Mons shows the highest symmetry in its morphology as a cone, while Ascraeus Mons and Pavonis Mons display a deviation from the symmetry due to the development of aprons. We determined the age of the caldera and the surrounding region of the four major shield volcanoes of Tharsis Province using the crater counting technique. Chronological studies using the crater counting technique indicate that the significant part of the Tharsis volcanic province belongs to the Late Amazonian period (< 300 Ma). Hypsometric studies indicate that Tharsis Montes are tectonically active, while Olympus Mons dominantly showed erosional activity in the recent past. Accordingly, the investigation of Tharsis Montes is a critical way to improve the understanding of evolutionary pathways of volcanic landforms of the Martian surface.

Research Highlights

  1. 1.

    We studied the landform evolution of four major shield volcanoes of Tharsis volcanic province.

  2. 2.

    Morphometric, chronologic and hypsometric analysis was carried out to understand the evolutionary trend.

  3. 3.

    Hypsometric curve analysis showed that the landform evolution of Arsia Mons is dominantly tectonic.

  4. 4.

    Chronological analysis shows that majority of the Tharsis volcanic province belongs to the Late Amazonian period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  • Anderson R C, Dohm J M, Golombek M P, Haldemann A, Franklin B J, Tanaka K, Lia J and Peer B 2001 Significant centers of tectonic activity through time for the western hemisphere of Mars; J. Geophys. Res. 106(20) 20,563–20,585.

    Article  Google Scholar 

  • Anderson R C, Dohm J M, Williams J P, Robbins S J, Siwabessy A, Golombek M P and Schroeder J F 2019 Unraveling the geologic and tectonic history of the Memnonia Sirenum region of Mars: Implications on the early formation of the Tharsis rise; Icarus 332 132–150, https://doi.org/10.1016/j.icarus.2019.06.010.

    Article  Google Scholar 

  • Blasius K R and Cutts J A 1981 Topography of Martian central volcanoes; Icarus 45 87–112.

    Article  Google Scholar 

  • Bleacher J E, Greeley R, Williams D A, Werner S C, Hauber E and Neukum G 2007 Olympus Mons, Mars: Inferred changes in Late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data; J. Geophys. Res. 112 E04003, https://doi.org/10.1029/2006JE002826.

    Article  Google Scholar 

  • Bleacher J E, Orr T R, de Wet A P, Zimbelman J R, Hamilton C W, Garry W B, Crumpler L S and Williams D A 2017 Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the eastern Tharsis plains of Mars; J. Volcanol. Geotherm. Res. 342 29–46.

    Article  Google Scholar 

  • Bouley S, Baratoux D, Paulien N, Missenard Y and Saint-Bézar B 2018 The revised tectonic history of Tharsis; Earth Planet. Sci. Lett. 488 126–133, https://doi.org/10.1016/j.epsl.2018.02.019.

    Article  Google Scholar 

  • Brož P and Hauber E 2012 A unique volcanic field in Tharsis, Mars: Pyroclastic cones as evidence for explosive eruptions; Icarus 218 88–99.

    Article  Google Scholar 

  • Byrne P K, Van Wyk de Vries B, Murray J B and Troll V R 2009 The geometry of volcano flank terraces on Mars; Earth Planet. Sci. Lett. 281 1–13, https://doi.org/10.1016/j.epsl.2009.01.043.

  • Byrne P K, Wyk Van, de Vries B, Murray J B and Troll V R 2012 A volcanotectonic survey of Ascraeus Mons, Mars; J. Geophys. Res. 117 E01004, https://doi.org/10.1029/2011JE003825.

    Article  Google Scholar 

  • Carr M H 1973 Volcanism on Mars; J. Geophys. Res. 78 4049–4062.

    Article  Google Scholar 

  • Carr M H 1974 Tectonism and volcanism of the Tharsis region of Mars; J. Geophys. Res. 79 3943–3949.

    Article  Google Scholar 

  • Carr M H 1975 Geologic map of the Tharsis Quadrangle of Mars; U.S. Geol. Surv. IMAP 893, scale 1:5,000,000.

  • Carr M H 1980 Morphology of the Martian surface; Space Sci. Rev. 25 231–284.

    Article  Google Scholar 

  • Carr M H 2006 The Surface of Mars; Cambridge University Press, 307p.

  • Carr M H, Greeley R, Blasius K R, Guest J E and Murray J B 1977 Some Martian volcanic features as viewed from Viking orbiters; J. Geophys. Res. 82 3985–4015.

    Article  Google Scholar 

  • Crosta G B, Frattini P, Valbuzzi E and De Blasio F V 2018 Introducing a new inventory of large Martian landslides; Earth Space Sci. 5 89–119, https://doi.org/10.1002/2017EA000324.

    Article  Google Scholar 

  • Crumpler L S and Aubele J C 1978 Structural evolution of Arsia Mons, Pavonis Mons and Ascraeus Mons: Tharsis region of Mars; Icarus 34 496–511.

    Article  Google Scholar 

  • Davies M E 1974 Photogrammetric measurements of Olympus Mons on Mars; Icarus 21 230–236.

    Article  Google Scholar 

  • De Blasio F V 2011 The aureole of Olympus Mons (Mars) as the compound deposit of submarine landslides; Earth Planet. Sci. Lett. 312 126–139, https://doi.org/10.1016/j.epsl.2011.09.019.

    Article  Google Scholar 

  • Dundas C M, Keszthelyi L P, Bray V J and McEwen A S 2010 Role of material properties in the cratering record of young platyridged lava on Mars; Geophys. Res. Lett. 37 L12203, https://doi.org/10.1029/2010GL042869.

    Article  Google Scholar 

  • Greeley R and Spudis P D 1981 Volcanism on Mars; Rev. Geophys. Space Phys. 19 13–41.

    Article  Google Scholar 

  • Grosse P, Euillades P A, Da Euillades L and Van W V B 2014 A global database of composite volcano morphometry; Bull. Volcanol. 76(1) 1–16.

    Article  Google Scholar 

  • Hartmann W K and Neukum G 2001 Cratering chronology and the evolution of Mars; Space Sci. Rev. 96 165–194, https://doi.org/10.1023/A:1011945222010.

    Article  Google Scholar 

  • Hartmann W K, Strom R G, Weidenschilling S J, Blasius K R, Voronow A, Dence M R, Grieve R A F, Diaz J, Chapman C R, Shoemaker E M and Jones K L 1981 Basaltic Volcanism on the Terrestrial Planets; Pergamon Press Inc, New York.

    Google Scholar 

  • Hauber E, Bleacher J, Gwinner K, Williams D and Greeley R 2009 The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars; J. Volcanol. Geotherm. Res. 185 69–95, https://doi.org/10.1016/j.jvolgeores.2009.04.015.

    Article  Google Scholar 

  • Hauber E, Brož P, Jagert F, Jodłowski P and Platz T 2011 Very recent and widespread basaltic volcanism on Mars; Geophys. Res. Lett. 38 L10201, https://doi.org/10.1029/2011GL047310.

    Article  Google Scholar 

  • Head J W, Seibert N, Pratt S, Smith D, Zuber M, Solomon S, McGovern P J, Garvin J B and the MOLA Science Team 1998 Characterization of major volcanic edifices on Mars using Mars Orbiter Laser Altimeter (MOLA) data; Lunar Planet. Sci. XXIX Abstract 1322.

  • Hodges C A and Moore H J 1994 Atlas of volcanic features on Mars; U.S. Geol. Surv. Prof. Paper 1534.

  • Ivanov B A 2001 Mars/Moon cratering rate ratio estimates; Space Sci. Rev. 96 87–104, https://doi.org/10.1023/A:1011941121102.

    Article  Google Scholar 

  • Kallianpur K and Mouginis-Mark P J 2001 Slopes of Martian volcanoes; Lunar Planet. Sci. XXXII 1258.

  • Kneissl T, van Gasselt S and Neukum G 2011 Map-projection-independent crater size-frequency determination in GIS environments – New software tool for ArcGIS; Planet. Space Sci. 59 1243–1254, https://doi.org/10.1016/j.pss.2010.03.015.

    Article  Google Scholar 

  • Lele A 2014 Mission Mars: India’s Quest for the Red Planet; Springer Briefs in Applied Sciences and Technology, pp. 39–69, https://doi.org/10.1007/978-81-322-1521-9.

  • Lifton N A and Chase C G 1992 Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: Implications for landscape evolution in the San Gabriel Mountains, California; Geomorphology 5 77–114, https://doi.org/10.1016/0169-555X(92)90059W.

    Article  Google Scholar 

  • Malin M C et al. 2007 Context camera investigation onboard the Mars Reconnaissance Orbiter; J. Geophys. Res. 112 E05S04, https://doi.org/10.1029/2006JE002808.

  • Masek J G, Isacks B L, Gubbels T L and Fielding E J 1994 Erosion and tectonics at the margins of continental plateaus; J. Geophys. Res. 99 13,941–13,956, https://doi.org/10.1029/94JB00461.

    Article  Google Scholar 

  • McGovern P J, Smith J R, Morgan J K and Bulmer M H 2004 Olympus Mons aureole deposits: New evidence for a flank failure origin; J. Geophys. Res. 109 E08008, https://doi.org/10.1029/2004JE002258.

    Article  Google Scholar 

  • Michael G G and Neukum G 2010 Planetary surface dating from crater size–frequency distribution measurements: Partial resurfacing events and statistical age uncertainty; Earth Planet. Sci. Lett. 294 223–229, https://doi.org/10.1016/j.epsl.2009.12.04.

    Article  Google Scholar 

  • Morris E C and Dwornik S E 1978 Geologic map of the Amazonis quadrangle of Mars; U.S. Geol. Surv. Misc. Invest. Series Map 1-1049, scale 1:5,000,000.

  • Morris E C and Tanaka K L 1994 Geologic maps of the Olympus Mons region of Mars; U.S. Geol. Surv. Misc. Invest. Ser. Map 1-2327-B.

  • Mouginis-Mark P 2018 Olympus Mons volcano, Mars: A photogeologic view and new insights; Geochemistry 78 397–431, https://doi.org/10.1016/j.chemer.2017.11.006.

    Article  Google Scholar 

  • Mouginis-Mark P J and Kallianpur K J 2002 Heights of Martian volcanoes and the geometry of their calderas from MOLA data; Lunar Planet. Sci. XXXIII abstract 1409.

  • Mouginis-Mark P J and Robinson M S 1992 Evolution of the Olympus Mons Caldera, Mars; Bull. Volcanol. 54 347–360, https://doi.org/10.1007/BF00312318.

    Article  Google Scholar 

  • Mouginis-Mark P J and Rowland S K 2008 Lava flows at Arsia Mons, Mars: Insights from a graben imaged by HiRISE; Icarus 198(1) 27–36.

    Article  Google Scholar 

  • Musiol S et al. 2016 Lithospheric flexure and gravity spreading of Olympus Mons volcano, Mars; J. Geophys. Res. 121 255–272, https://doi.org/10.1002/2015JE004896.

    Article  Google Scholar 

  • Nair A M and Mathew G 2017 Geochemical modelling of terrestrial igneous rock compositions using laboratory thermal emission spectroscopy with an overview on its applications to Indian Mars Mission; Planet Space Sci. 140 62–73, https://doi.org/10.1016/j.pss.2017.04.009.

    Article  Google Scholar 

  • Neukum G 1983 Meteorite bombardment and dating of planetary surfaces; Doctoral Dissertation, University of Munich.

  • Neukum G and Hiller K 1981 Martian ages; J. Geophys. Res. 86 3097–3121.

    Article  Google Scholar 

  • Neukum G et al. 2004 Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera; Nature 432 971–979, https://doi.org/10.1038/nature03231.

    Article  Google Scholar 

  • Pérez Peña J V, Azañón J M, Booth Rea G, Azor A and Delgado J 2009 Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral; J. Geophys. Res. 114 F02018, https://doi.org/10.1029/2008JF001092.

    Article  Google Scholar 

  • Peters S I and Christensen P R 2017 Flank vents and graben as indicators of Late Amazonian volcanotectonic activity on Olympus Mons; J. Geophys. Res. Planets 122 501–523, https://doi.org/10.1002/2016JE005108.

    Article  Google Scholar 

  • Platz T, Michael G G, Tanaka K L, Skinner Jr J A and Fortezzo C M 2013 Crater-based dating of geological units on Mars: Methods and application for the new global geological map; Icarus 225 806–827.

    Article  Google Scholar 

  • Plescia J B 2004 Morphometric properties of Martian volcanoes; J. Geophys. Res. 109 E03003, https://doi.org/10.1029/2002JE002031.

    Article  Google Scholar 

  • Plescia J B and Saunders R S 1982 Tectonic history of the Tharsis Region, Mars; J. Geophys. Res. 87(B12) 9775–9791, https://doi.org/10.1029/JB087iB12p09775.

    Article  Google Scholar 

  • Pozzobon R, Orlandi D, Pagli C and Mazzarini F 2021 Volcano dynamics vs. tectonics on Mars: Evidence from Pavonis Mons; J. Volcanol. Geotherm. Res. 410 107148, https://doi.org/10.1016/j.jvolgeores.2020.107148.

    Article  Google Scholar 

  • Robbins S J, Achille G D and Hynek B M 2011 The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes; Icarus 211 1179–1203.

    Article  Google Scholar 

  • Robinson M S, Mouginis-Mark P J, Zimbelman J R, Wu S S C, Ablin K K and Howington-Kraus A E 1993 Chronology, eruption duration, and atmospheric contribution of the Martian volcano Apollinaris Patera; Icarus 104 301–323.

    Article  Google Scholar 

  • Smith D E et al. 2001 Mars orbiter laser altimeter: Experiment summary after the first year of global mapping on Mars; J. Geophys. Res. 106 23,689–23,722.

    Article  Google Scholar 

  • Solomon S C and Head J W 1982 Evolution of the Tharsis Province of Mars: The importance of heterogeneous lithospheric thickness and volcanic construction; J. Geophys. Res. 87(B12) 9755, https://doi.org/10.1029/JB087iB12p09755.

    Article  Google Scholar 

  • Strahler A N 1952 Hypsometric (area-altitude) analysis of erosional topography; Geol. Soc. Am. Bull. 63 1117–1142.

    Article  Google Scholar 

  • Tanaka K L, Skinner Jr J A, Dohm J M, Irwin III R P, Kolb E J, Fortezzo C M, Platz T, Michael G G and Hare T M 2014 Geologic map of Mars; U.S. Geol. Surv. Sci. Invest. Map 1:20000000, https://doi.org/10.3133/sim3292.

  • Thomas P J, Squyres S W and Carr M H 1990 Flank tectonics of Martian volcanoes; J. Geophys. Res. 95(B9) 14,345–14,355, https://doi.org/10.1029/JB095iB09p14345.

    Article  Google Scholar 

  • Thouret J C 1999 Volcanic geomorphology – an overview; Earth-Sci. Rev. 47 95–131.

    Article  Google Scholar 

  • Werner S C 2009 The global Martian volcanic evolutionary history; Icarus 201 44–68, https://doi.org/10.1016/j.icarus.2008.12.019.

    Article  Google Scholar 

  • Wise D U, Golombek M P and McGill G E 1979 Tharsis province of Mars: Geologic sequence, geometry, and a deformation mechanism; Icarus 38 456–472.

    Article  Google Scholar 

  • Wu S S C, Garcia P A, Jordan R, Schafer F J and Skiff B A 1984 Topography of the shield volcano, Olympus Mons on Mars; Nature 309 432–435.

    Article  Google Scholar 

  • Zimbelman J R 2000 Non-active dunes in the Acheron Fossae region of Mars between the Viking and Mars Global Surveyor eras; Geophys. Res. Lett. 27(7) 1069–1072.

    Article  Google Scholar 

  • Zisk S H, Mouginis-Mark P J, Goldspiel J M, Slade M A and Jurgens R F 1992 Valley systems on Trevena Patera, Mars: Earth-based radar measurements of slopes; Icarus 96 226–233.

    Article  Google Scholar 

  • Zuber M, Smith D, Solomon S, Muhleman D, Head J, Garvin J, Abshire J and Bufton J 1992 The Mars Observer Laser Altimeter investigation; J. Geophys. Res. 97 7781–7798.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the Indian Space Research Organization, Department of Space through the scheme MOM-AO project to conduct this research. The authors thank NASA PDS Geosciences Node for providing CTX and MOLA datasets. The authors would like to express their gratitude to IIT Guwahati for the facility and support given during the project.

Author information

Authors and Affiliations

Authors

Contributions

Adnan Ahmad executed the analysis and drafted the manuscript. Archana M Nair conceived the research idea, supervised the analysis, reviewed–edited and finalised the manuscript.

Corresponding author

Correspondence to Archana M Nair.

Additional information

Communicated by N V Chalapathi Rao

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1415 kb)

Supplementary file2 (DOCX 1035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Nair, A.M. Landform evolution of Tharsis Montes and Olympus Mons of Mars: Insights from morphometric, hypsometric and chronologic evidences. J Earth Syst Sci 130, 172 (2021). https://doi.org/10.1007/s12040-021-01672-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01672-5

Keywords

Navigation