Skip to main content

Advertisement

Log in

Establishment of digital 3D map based on discrete elevation point data measured in the field

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This study established a survey zone digital elevation model (DEM) using highly precise and regularly updated three-dimensional coordinates of the surface of barchan dunes using CASS9.0 software. Two contour plots were drawn, one for the entire survey zone drawn with a contour interval of 0.005 m and one for an individual sand dune drawn with a contour interval of 0.001 m. ArcMap10 was used to define the projection of the created contour lines in DWG format and export the data into shape files to enable the creation of a triangulated irregular network (TIN). Next, TIN data was converted into raster data to facilitate our analysis and data processing. We created the final TIN by using an additional smoothing processing on the desired area that had been clipped out. We added the TIN data to the ArcScene module to establish the final 3D numerical model of barchan dunes. This model extracts and analyzes the changes in the characteristic parameters of the barchan dune as its topography changes in real time so researchers can visualize dune migration and evolution. Their understanding is enhanced by comparing and superposing the various 3D dune models on different days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abolkhair Y M S 1986 The statistical analysis of the sand grain size distribution of AI-Ubay-lah barchan dunes, northwestern Ar-Rub-Alkhali desert, Saudi Arabia; GeoJournal 13(2) 103–109.

    Article  Google Scholar 

  • Baddock M C, Livingstone I and Wiggs G F S 2007 The geomorphological significance of airflow patterns in transverse dune interdunes; Geomorphology 87 322–336.

    Article  Google Scholar 

  • Bo T L and Zheng X J 2011 The formation and evolution of aeolian dune fields under unidirectional wind; Geomorphology 134 408–416.

    Article  Google Scholar 

  • Chen S B 2005 Three-dimension visualization for texture in western slope of Songliao basin; J. Jilin Univ. 35 47–50.

    Google Scholar 

  • Cong D G, Pang H L, Fang M, Chen X J, Liu C and Tian Y 2014 Dunes distribution study on north of Tengery desert based on remote sensing and DEM; China Min. Mag. 23 153–159.

    Google Scholar 

  • Dinieg S, Glasner K and Byrne S 2010 Long-time evolution of models of aeolian sand dune fields: In fluence of dune formation and collision; Geomorphology 121 55–68.

    Article  Google Scholar 

  • Dong Z B, Qian G Q, Lu P, Luo W and Wang H 2009 Turbulence fields in the lee of two-dimensional transverse dunes simulated in a wind tunnel; Earth. Surf. Proc. Land. 34 204–216.

    Article  Google Scholar 

  • Du H Q, Han Z W, Deng X H, Zhang Y and Sun J H 2011 A sand flux model for the surface of barchan dunes using GIS-based spatial analysis; J. Desert. Res. 31(4) 815–823.

    Google Scholar 

  • Durán Q, Schwämmle V, Lind P G and Herrmann H J 2009 The dune size distribution and scaling relations of barchan dune fields; Granul. Matter. 11 7–11.

    Article  Google Scholar 

  • Elbelrhiti H, Claudin P and Andreotti B 2005 Field evidence for surface-wave-induced instability of sand dunes; Nature 437 720–723.

    Article  Google Scholar 

  • Endo N, Taniguchi K and Katsuki A 2004 Observation of the whole process of interaction between barchans by flume experiments; Geophys. Res. Lett. 31(12) 5321–5329.

    Article  Google Scholar 

  • Faria R, Ferreira A D, Sismeiro J L, Mendes J C F and Sousa A C M 2011 Wind tunnel and computational study of the stoss slope effect on the Aeolian erosion of transverse sand dunes; Aeolian Res. 3 303–314.

    Article  Google Scholar 

  • Frank A and Kocurek G 1996 Airflow up the stoss slope of sand dune: Limitation of current understanding; Geomorphology 17 47–56.

    Article  Google Scholar 

  • Gómez-Ortiz D, Martín-Crespo T, Rodríguez I, Sánchez M J and Montoya I 2009 The internal structure of modern barchan dunes of the Ebro River Delta (Spain) from ground penetrating radar; J. Appl. Geophys. 68 159–170.

    Article  Google Scholar 

  • Han Z W, Du H Q, Gou Q Q and Sun J H 2012 The piecewise fitting of sand flux vertical distribution of wind–sand flow within 100 cm height above the barchan dune surface; Sci. Geogr. Sin. 32(7) 892–897.

    Google Scholar 

  • Hersen P 2004 On the crescentic shape of barchan dunes; Eur. Phys. J. B 37 507–514.

    Article  Google Scholar 

  • Huang D Q, Dong Y X, Ha S and Ma J 2007 The Application of multi-station RTKGPS in the measurement of coastal dune; Acta. Scientiarum. Nat. U. Sunyatseni 46(4) 121–124.

    Google Scholar 

  • Hugenholtz C H and Wolfe S A 2005 Recent stabilization of active sand dunes on the Canadian prairie and relation to recent climate variations; Geomorphology 68 131–147.

    Article  Google Scholar 

  • Käln H W and Adelaide C R T 1988 Formation and age of desert dunes in the lake eyre depocentres in central Australia; Geol. Rundsch. 77(3) 815–834.

    Article  Google Scholar 

  • Katagiri J, Matsushima T and Yamada Y 2010 Simple shear simulation of 3D irregularly-shaped particles by image-based DEM; Granul. Matter. 12 491–497.

    Article  Google Scholar 

  • Katsuki A, Nishimori H, Endo N and Taniguchi K 2004 Collision dynamics of two barchan dunes simulated by a simple model; J. Phys. Soc. Jan. 74(2) 538–541.

    Article  Google Scholar 

  • Kocurek G and Ewing R C 2005 Aeolian dune field self-organization–implications for the formation of simple versus complex dune-field patterns; Geomorphology 72 94–105.

    Article  Google Scholar 

  • Li H P and Chen G T 1999 Retrograde evolution of barchan on interdune corridor of complex ridges in central Taklimakan desert; J. Desert. Res. 19(2) 134–138.

    Google Scholar 

  • Ling Y Q, Wu Z, Liu S Z and Li C Z 1998 Simulating study on barchan dune; Chinese Geogr. Sci. 8(2) 168–175.

    Article  Google Scholar 

  • Li S, Liu X W, Li H C, Zheng Y H and Wei X H 2007 A wind tunnel simulation of the dynamic processes involved in sand dune formation on the western coast of Hainan island; J. Geogr. Sci. 17(4) 453–468.

    Article  Google Scholar 

  • Li T W 2010 Modern surveying; Science Press, Beijing.

    Google Scholar 

  • Mckee E D 1966 Structures of dunes at White Sands National Monument, New Mexico; Sedimentology 7(1) 1–69.

    Article  Google Scholar 

  • Moosavi V, Shamsi S R F, Moradi H and Shirmohammadi B 2014 Application of Taguchi method to satellite image fusion for object-oriented mapping of barchan dunes; Geosci. J. 18(1) 45–49.

    Article  Google Scholar 

  • Mou N X, Liu W B, Wang H Y and Dai H L 2012 The tutorial of ArcGIS10 geographic information system; Surveying and Mapping Publishing House, Beijing.

    Google Scholar 

  • Palmer J A, Mejia-Alvarez R, Best J L and Christensen K T 2012 Particle-image velocimetry measurements of flow over interacting barchan dunes; Exp. Fluids 52 809–829.

    Article  Google Scholar 

  • Parsons D R, Wiggs G F S, Walker I J, Ferguson R I and Garvey B G 2004a Numerical modeling of airflow over an idealized transverse dune; Environ. Modell. Softw. 19 153–162.

    Article  Google Scholar 

  • Parsons D R, Walker I J and Wiggs G F S 2004b Numerical modeling of flow structures over idealized transverse aeolian dunes of varying geometry; Geomorphology 59 149–164.

    Article  Google Scholar 

  • Qi R, Qi M and Li K 2014 The research on the method of 3D terrain generation based on the digital terrain map; Electron. Des. Eng. 22(7) 191–193.

    Google Scholar 

  • Ruiz-arias J A, Tovar-pescador J, Pozo-vazquez D and Alsamamra H 2009 A comparative analysis of DEM-based models to estimate the solar radiation in mountainous terrain; Int. J. Geogr. Inf. Sci. 23(8) 1049–1076.

    Article  Google Scholar 

  • Samani A N, Khosravi H, Mesbahzadeh T, Azarakhshi M and Rahdari M R 2016 Determination of sand dune characteristics through geomorphometry and wind data analysis in central Iran (Kashan Erg); Arab. J. Geosci. 9 716.

    Article  Google Scholar 

  • Samavati F and Runions A 2016 Interactive 3D content modeling for digital earth; Vis. Comput. 32 1293–1309.

    Article  Google Scholar 

  • Schwämmle V and Herrmann H J 2005 A model of Barchan dunes including lateral shear stress; Eur. Phys. J. E 16 57–65.

    Article  Google Scholar 

  • Sibson R 1981 A brief description of natural neighbour interpolation. In: Interpreting Multivariate Data 21 21–36

    Google Scholar 

  • Stam J M T 1997 On the modeling of two-dimensional aeolian dunes; Sedimentology 44 127–141.

    Article  Google Scholar 

  • Tsoar H and Parteli E J R 2016 Bidirectional winds, barchan dune asymmetry and formation of Seif dunes from barchans: A discussion; Environ. Earth. Sci. 75(18) 1237.

    Article  Google Scholar 

  • Tang G A, Li F Y and Liu X J 2010 Digital elevation mode course; Science Press, Beijing.

    Google Scholar 

  • Tang G A and Yang X 2012 ArcGIS geographic information system spatial analysis experiment course; Science Press, Beijing.

    Google Scholar 

  • Walker I J and Nickling W G 2003 Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes in a wind tunnel; Earth. Surf. Proc. Land. 28 1111–1124.

    Article  Google Scholar 

  • Wang C, Li H, Yang J S and Yang C C 2015 Study on generation technique of high quality contour lines based on grid DEM; Acta. Geol. Sinica. 17(2) 160–165.

    Google Scholar 

  • Weng W S, Hunt J C R, Carruthers D J, Warren A, Wiggs G F S, Livingstone I and Castro I 1991 Air flow and sand transport over sand-dunes; Acta. Mech. Suppl. 2 1–22.

    Article  Google Scholar 

  • Werner B T 1995 Eolian dunes: Computer simulations and attractor interpretation; Geology 23 1107–1110.

    Article  Google Scholar 

  • Wiggs G F S, Livingstone I and Warren A 1996 The role of streamline curvature in sand dune dynamics: Evidence from field and wind tunnel measurements; Geomorphology 17 29–46.

    Article  Google Scholar 

  • Wu Z 1987 Aeolian geomorphology; Science Press, Beijing.

    Google Scholar 

  • Xia J S and Dong P L 2016 A GIS add-in for automated measurement of sand dune migration using LiDAR-derived multitemporal and high-resolution digital elevation models; Geosphere 12(4) 1316–1322.

    Article  Google Scholar 

  • Xiang J S, Munjiza A, Latham J and Guises R 2009 On the validation of DEM and FEM/DEM models in 2D and 3D; Eng. Comput. 26(6)673–687.

    Article  Google Scholar 

  • Yang N, Su L L, Wan L, Yang J, Chen S Y and Hu W L 2016 A method for building 3D models of barchan dunes; Geomorphology 253 181–188.

    Article  Google Scholar 

  • Yan L and Yang L H 2009 Based on Delaunay triangulation DEM of terrain model; Comput. Inf. Sci. 2(2) 137.

    Google Scholar 

  • Zhang C L, Hao Q Z, Zou X Y and Yan P 1999 Response of morphology and deposits to surface flow on windward slope of barchan dune; J. Desert. Res. 19(4) 359–363.

    Google Scholar 

Download references

Acknowledgements

The author wants to express his appreciation for Rui Wang and Meng-Chen Chen, who was admitted to the University of Chinese Academy of Sciences in 2014. Both have participated in the surveying work of sand dune topography in the hinterlands of the Taklimakan Desert. This work was financially supported by the National Natural Science Foundation of China (41371025) and the National Science and Technology Support Program (2015BAC06B01-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwen Han.

Additional information

Corresponding editor: Navin Juyal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Han, Z., Guo, C. et al. Establishment of digital 3D map based on discrete elevation point data measured in the field. J Earth Syst Sci 128, 25 (2019). https://doi.org/10.1007/s12040-018-1046-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-1046-9

Keywords

Navigation