Skip to main content

Advertisement

Log in

Bidirectional winds, barchan dune asymmetry and formation of seif dunes from barchans: a discussion

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Barchan dunes—which have a crescent shape with two horns pointing downwind—may undergo a transition to a longitudinal (seif) dune under a bimodal wind regime. Understanding the barchan–seif dune transition is important for the research of dune field evolution and for the investigation of planetary climate and wind regimes. Two models have been proposed to explain the barchan–seif dune transition: Bagnold (The physics of blown sand and desert dunes. Methuen, London, 1941) and Tsoar (Z Geomorphol 28:99–103, 1984). The significance of both models has been investigated through much field and modeling works over the last few decades. However, the conditions for the barchan–seif dune transition as well as the models proposed to explain it are still poorly understood. To correct this situation, here we present and discuss some examples of asymmetric barchans and barchan–seif transitional dune morphologies occurring in nature and show how to characterize wind regimes and identify the relevance of different factors leading to the observed patterns (in addition to wind directionality). Bagnold’s and Tsoar’s models were conceived to explain the barchan–seif dune transition under asymmetric bimodal winds. They were not conceived to explain all types of barchan asymmetry. However, these models must be evaluated in the light of an insight that has been gained more recently, from field investigations, experiments and numerical simulations: The seif dune forms only if the divergence angle between the two main wind directions is ≥90°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida MP, Parteli EJR, Andrade JS, Herrmann HJ (2008) Giant saltation on Mars. PNAS USA 105:6222–6226

    Article  Google Scholar 

  • Ashkenazy Y, Yizhaq H, Tsoar H (2012) Sand dune mobility under climate change in the Kalahari and Australian deserts. Clim Chan 112:901–923

    Article  Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London

    Google Scholar 

  • Bourke MC (2010) Barchan dune asymmetry: observations from Mars and Earth. Icarus 205:183–197

    Article  Google Scholar 

  • Bourke MC, Balme M, Zimbelman JR (2004) A comparative analysis of barchan dunes in the intra-crater dune fields and the North Polar Sand Sea, LPSC XXXV abst. 1453

  • Bullard JE (1997) A note on the use of the Fryberger method for evaluating potential sand transport by wind. J Sediment Res 67:499–501

    Article  Google Scholar 

  • Carson MA, MacLean PA (1985) Hybrid eolian dunes of William River dune field, Northern Saskatchewan, Canada. Am Assoc Petrol Geol Bull 69:242–243

    Google Scholar 

  • Dong Z, Wei Z, Qian G, Zhang Z, Luo W, Hu G (2010) “Raked” linear dunes in the Kumtagh Desert, China. Geomorphology 123:122–128

    Article  Google Scholar 

  • Durán O, Parteli EJR, Herrmann HJ (2010) A continuous model for sand dunes: review, new developments and application to barchan dunes and barchan dune fields. Earth Surf Proc Landf 35:1591–1600

    Article  Google Scholar 

  • Embabi NS, Ashour MM (1993) Barchan dunes in Qatar. J Arid Environ 25:49–69

    Article  Google Scholar 

  • Finkel HJ (1959) The barchans of southern Peru. J Geol 67:614–647

    Article  Google Scholar 

  • Fryberger SG, Dean G (1979) Dune forms and wind regime. In: McKee E (ed) A study of global sand seas, pp 137–169

  • Gay SP (1999) Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru. Geomorphology 27:279–293

    Article  Google Scholar 

  • Haff PK, Presti DE (1995) Barchan dunes of the Salton Sea Region, California. In: Tchakerian VP (ed) Desert aeolian processes. Chapman & Hall, London, pp 153–177

    Chapter  Google Scholar 

  • Hamdan MA, Refaat AA, Wahed MA (2016) Morphologic characteristics and migration rate assessment of barchan dunes in the Southeastern Western Desert of Egypt. Geomorphology 257:57–74

    Article  Google Scholar 

  • Hastenrath SL (1967) The Barchans of the Arequipa region, southern Peru. Z Geomorphol 11:300–331

    Google Scholar 

  • Hersen P (2004) On the crescentic shape of barchan dunes. Eur Phys J B 37:507–514

    Article  Google Scholar 

  • Hersen P, Douady S, Andreotti B (2002) Relevant length scale of barchan dunes. Phys Rev Lett 89:264301

    Article  Google Scholar 

  • Hesp PA, Hastings K (1998) Width, height and slope relationships and aerodynamic maintenance of barchans. Geomorphology 22:193–204

    Article  Google Scholar 

  • Howard AD, Morton JB, Gad-el-Hak M, Pierce DB (1978) Sand transport model of barchan dune equilibrium. Sedimentology 25:307–338

    Article  Google Scholar 

  • Iversen JD, Rasmussen KR (1999) The effect of wind speed and bed slope on sand transport. Sedimentology 46:723–731

    Article  Google Scholar 

  • Kawamura R (1951) Study of sand movement by wind. Translated (1965) as University of California Hydraulics Engineering Laboratory Report HEL 2-8 Berkeley

  • Kok JF, Parteli EJR, Michaels TI, Bou Karam D (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75:106901

    Article  Google Scholar 

  • Kroy K, Sauermann G, Herrmann HJ (2002) Minimal model for sand dunes. Phys Rev Lett 88:054301

    Article  Google Scholar 

  • Lettau K, Lettau HH (1978) Experimental and micro-meteorological field studies of dune migration. In: Lettau HH, Lettau K (eds) Exploring the World’s Driest Climate (IES Report 101:110-147), University of Wisconsin-Madison, Institute for Environmental Studies, Madison

  • Long JT, Sharp RP (1964) Barchan-dune movement in Imperial Valley, California. Geol Soc Am Bull 75:149–156

    Article  Google Scholar 

  • Lv P, Dong Z, Narteau C, Rozier O (2016) Morphodynamic mechanisms for the formation of asymmetric barchans: improvement of the Bagnold and Tsoar models. Environ Earth Sci 75:259

    Article  Google Scholar 

  • Miot da Silva G, Hesp P (2010) Coastline orientation, aeolian sediment transport and foredune and dunefield dynamics of Moçambique Beach, Southern Brazil. Geomorphology 120:258–278

    Article  Google Scholar 

  • Momiji H, Bishop SR (2002) Estimating the windward slope profile of a barchan dune. Sedimentology 49:467–481

    Article  Google Scholar 

  • Moosavi V, Moradi H, Shamsi SRF, Shirmohammadi B (2014) Assessment of the planimetric morphology of barchan dunes. Catena 120:12–19

    Article  Google Scholar 

  • Norris RM (1966) Barchan dunes of imperial valley California. J Geol 74:292–306

    Article  Google Scholar 

  • Owen PR (1964) Saltation of uniform grains in air. J Fluid Mech 20:225–242

    Article  Google Scholar 

  • Parteli EJR, Herrmann HJ (2007) Saltation transport on Mars. Phys Rev Let 98:198001

    Article  Google Scholar 

  • Parteli EJR, Durán O, Tsoar H, Schwämmle V, Herrmann HJ (2009) Dune formation under bimodal winds. PNAS USA 106:22085–22089

    Article  Google Scholar 

  • Parteli EJR, Durán O, Bourke MC, Tsoar H, Pöschel T, Herrmann H (2014a) Origins of barchan dune asymmetry: insights from numerical simulations. Aeolian Res 12:121–133

    Article  Google Scholar 

  • Parteli EJR, Kroy K, Tsoar H, Andrade JS Jr, Pöschel T (2014b) Morphodynamic modeling of aeolian dunes: review and future plans. Eur Phys J Spec Topics 223:2269–2283

    Article  Google Scholar 

  • Pearce KI, Walker IJ (2005) Frequency and magnitude biases in the ‘Fryberger’ model, with implications for characterizing geomorphically effective winds. Geomorphology 68:39–55

    Article  Google Scholar 

  • Ping L, Narteau C, Dong Z, Zhang Z, Courrech du Pont S (2014) Emergence of oblique dunes in a landscape-scale experiment. Nature Geosci 7:99–103

    Article  Google Scholar 

  • Pye K, Tsoar H (1990) Aeolian Sand and Sand Dunes. Unwin Hyman, London

    Book  Google Scholar 

  • Reffet E, Courrech du Pont S, Hersen P, Douady S (2010) Formation and stability of transverse and longitudinal sand dunes. Geology 38:491–494

    Article  Google Scholar 

  • Rubin DM (2012) A unifying model for planform straightness of ripples and dunes in air and water. Earth-Sci Rev 113:176–185

    Article  Google Scholar 

  • Rubin DM, Hunter R (1987) Bedform alignment in directionally varying flows. Science 237:276–278

    Article  Google Scholar 

  • Rubin DM, Ikeda H (1990) Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows. Sedimentology 37:673–684

    Article  Google Scholar 

  • Rubin DM, Tsoar H, Blumberg DG (2008) A second look at western Sinai seif dunes and their lateral migration. Geomorphology 93:335–342

    Article  Google Scholar 

  • Sauermann G, Rognon P, Poliakov A, Herrmann HJ (2000) The shape of the barchan dunes of Southern Morocco. Geomorphology 36:47–62

    Article  Google Scholar 

  • Sauermann G, Kroy K, Herrmann HJ (2001) Continuum saltation model for sand dunes. Phys Rev E 64:031305

    Article  Google Scholar 

  • Sauermann G, Andrade JS Jr, Maia LP, Costa UMS, Araújo AD, Herrmann HJ (2003) Wind velocity and sand transport on a barchan dune. Geomorphology 54:245–255

    Article  Google Scholar 

  • Shehata W, Bader T, Irtem O, Ali A, Abdallah M, Aftab S (1992) Rate and mode of barchan dunes advance in the central part of the Jafura sand sea. J Arid Environ 23:1–17

    Google Scholar 

  • Sorensen M (2004) On the rate of aeolian sand transport. Geomorphology 54:53–62

    Article  Google Scholar 

  • Tsoar H (1984) The formation of seif dunes from barchans—a discussion. Z Geomorphol 28:99–103

    Google Scholar 

  • Tsoar H (1995) Desertification in Northern Sinai in the eighteenth century. Clim Change 29:429–438

    Article  Google Scholar 

  • Tsoar H (2001) Types of aeolian sand dunes and their formation. Geomorph Fluid Mech 582:403–429

    Article  Google Scholar 

  • Ungar JE, Haff PK (1987) Steady-state saltation in air. Sedimentology 34:289–299

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally A, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 reanalysis. Quart J Roy Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Wasson RJ, Hyde R (1983) Factors determining desert dune type. Nature 304:337–339

    Article  Google Scholar 

  • Werner BT (1995) Eolian dunes: computer simulation and attractor interpretation. Geology 23:1107–1110

    Article  Google Scholar 

  • Wiggs GFS (2001) Desert dune processes and dynamics. Prog Phys Geogr 25:53–79

    Article  Google Scholar 

Download references

Acknowledgments

E.J.R.P. acknowledges financial support from DFG (German Research Foundation) Grant RI 2497/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Tsoar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoar, H., Parteli, E.J.R. Bidirectional winds, barchan dune asymmetry and formation of seif dunes from barchans: a discussion. Environ Earth Sci 75, 1237 (2016). https://doi.org/10.1007/s12665-016-6040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6040-4

Keywords

Navigation