Skip to main content

Advertisement

Log in

Geochemical characteristics of Proterozoic granite magmatism from Southern Granulite Terrain, India: Implications for Gondwana

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Granitoid intrusions occur widely in the Southern Granulite Terrain (SGT) of India, particularly within the Cauvery Suture Zone (CSZ), which is considered as the trace of the Neoproterozoic Mozambique ocean closure. Here we present the petrological and geochemical features of 19 granite plutons across the three major tectonic blocks of the terrain. Our data show a wide variation in the compositions of these intrusions from alkali feldspathic syenite to granite. The whole rock geochemistry of these intrusions displays higher concentrations of \(\hbox {SiO}_{2}\), FeO*, \(\hbox {K}_{2}\hbox {O}\), Ba, Zr, Th, LREE and low MgO, \(\hbox {Na}_{2}\hbox {O}\), Ti, P, Nb, Y and HREE’s. The granitoids are metaluminous to slightly peraluminous in nature revealing both I-type and A-type origin. In tectonic discrimination plots, the plutons dominantly show volcanic arc and syn-collisional as well as post-collisional affinity. Based on the available age data together with geochemical constrains, we demonstrate that the granitic magmatism in the centre and south of the terrain is mostly associated with the Neoproterozoic subduction–collision–accretion–orogeny, followed by extensional mechanism of Gondwana tectonics events. Similar widespread granitic activity has also been documented in the Arabian Nubian shield, Madagascar, Sri Lanka and Antarctica, providing similarities for the reconstruction of the crustal fragments of Gondwana supercontinent followed by Pan-African orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Balasubrahmanyan M N, Bhanumathi L, Bishni P K, Ray Barman T, Bhalla J K and Chandy K C 1979 A new age data of Gingee migmatite and its bearing on chronology of granulite terrain of Tamil Nadu; Unpubl. Geol. Surv. India P.R. for F.S. 1978–79.

  • Balasubrahmanyan M N and Sarkar A 1981 \({}^{40}\text{ K }/^{40}\text{ Ar }\) ages of a suite of lower Palaeozoic post-tectonic granitoids, southern India; J. Geol. Soc. India 22 299–301.

    Google Scholar 

  • Bartlett J M, Dougherty-Page J S, Harris N B W, Hawkesworth C J and Santosh M 1998 The application of single Harris zircon evaporation and model Nd ages to the interpretation of polymetamorphic terrains: An example from the Proterozoic mobile belt of south India; Contrib. Mineral. Petrol. 131 181–195.

    Article  Google Scholar 

  • Batchelor R A and Bowden P 1985 Petrogenetic interpretation of granitoid rocks using multicationic parameters; Chem. Geol. 48 43–55.

    Article  Google Scholar 

  • Berger M and Braun I 1997 Pb–Pb dating of apatite by stepwise dissolution technique; Chem. Geol. 142 23–40.

    Article  Google Scholar 

  • Bhadra S and Nasipuri P 2017 Tectonothermal evolution of a garnet-bearing quartzo feldspathic gneiss from the Moyar shear zone, south India and its bearing on the Neoarchean accretionary tectonics; Lithos 274–275 1–18.

    Article  Google Scholar 

  • Bohm M, Van der Gugten C, Pin J L, Paquette I, Braun L M and Kriegsman 2003 Isotope geology and U–Pb geochronology of granites and high grade metamorphic rocks from the Achankovil unit, south India; Eur. J. Mineral. 15 24.

  • Bonin B, Bebien J and Masson P 2002 Granite: A planetary point of view; Gondwana Res. 5 261–273.

    Article  Google Scholar 

  • Brandt S, Raith M M, Schenk V, Sengupta P, Srikantappa C and Gerdes A 2014 Crustal evolution of the Southern Granulite Terrane, south India: New geochronological and geochemical data for felsic orthogneisses and granites; Precamb. Res. 246 91–122.

    Article  Google Scholar 

  • Braun I, Montel J M and Nicollet C 1998 Electron probe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India; Chem. Geol. 146 65–85.

    Article  Google Scholar 

  • Braun I 2006 Pan-African granitic magmatism in the Kerala Khondalite Belt, southern India; J. Asian Earth Sci. 28 38–45.

    Article  Google Scholar 

  • Brown M 1994 The generation, segregation, ascent and emplacement of granite magma: The migmatite-to-crustally-derived granite connection in thickened orogens; Earth Sci. Rev. 36 83–130.

    Google Scholar 

  • Burg J P and Ford M 1997 Orogeny through time: An overview; Geol. Soc. London Spec. Publ. 121 1–17.

    Article  Google Scholar 

  • Castro A, Ferandez C and Vigneresse J L 1999a (eds) Understanding the granites: Integrating new and classical techniques; Geol. Soc. London Spec. Publ. 168.

  • Castro A, Patino Douce A E, Corretg L G, De la Rosa J D, El-Biad M and El-Hmidi H 1999b Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of granite petrogenesis; Contrib. Mineral. Petrol. 135 255–276.

  • Cenki B and Kriegsman L M 2005 Tectonics of the Neoproterozoic Southern Granulite Terrain, south India; Precamb. Res. 138 37–56.

    Article  Google Scholar 

  • Chacko T, Kumar G R R and Newton R C 1987 Metamorphic P–T conditions of the Kerala (south India) Khondalite Belt: A granulite-facies supracrustal terrain; J. Geol. 95 343–358.

    Article  Google Scholar 

  • Chandrasekharan C G 1996 Petrochemistry and origin of the granitic rocks in the amphibolite-granulite facies transition zone near Kaveripattanam, Dharmapuri district, Tamil Nadu; Ind. Mineral. 50(1) 63–72.

    Google Scholar 

  • Chandrasekaran C G and Subrmanian S 1996 Petrogenesis of granitic rocks of low- to high-grade transition zone of Krishnagiri, Dharmapuri district, Tamil Nadu; Curr. Sci. 71(1) 42–48.

    Google Scholar 

  • Chandrasekharan C G 2002 Source characterstics and tectonic setting of granitoids of the Krishnagiri and Kaveripatnam areas of Dharmapuri Districts, Tamil Nadu; Ind. Mineral. 56 239–250.

    Google Scholar 

  • Chandra Sekaran M, Bhutani R and Balakrishnan S 2016 Rb–Sr and Sm–Nd study of granite–charnockite association in the Pudukkottai region and the link between metamorphism and magmatism in the Madurai Block; J. Earth Syst. Sci. 125 (3) 605–622.

    Article  Google Scholar 

  • Chappell B W and White A J R 1974 Two contrasting granite types; Pacific Geol. 8 173–174.

    Google Scholar 

  • Chappell B W and White A J R 1992 I- and S-type granites in the Lachlan fold belt; Trans. Roy. Soc. Edinburgh (Earth Sci.) 83 1–16.

    Article  Google Scholar 

  • Chetty T R K and Bhaskar Rao Y J 2006 The Cauvery Shear Zone, Southern Granulite Terrain, India: A crustal-scale flower structure; Gondwana Res. 10 77–85.

    Article  Google Scholar 

  • Chetty T R K, Bhaskar Rao Y J and Narayana B L 2003 A structural cross section along Krishnagiri–Palani corridor, Southern Granulite Terrain of India. Tectonics of Southern Granulite Terrain Kuppam–Palani Geotransect (ed.) Ramakrishna M, Geol. Soc. India Memoir 50 255–278.

  • Chetty T R K, Yellappa T, Nagesh P, Mohanty D P, Venkatasivappa V, Santosh M and Tsunogae T 2011 Structural anatomy of a dismembered ophiolite suite from Gondwana: The Manamedu complex, Cauvery suture zone, southern India; J. Asian Earth Sci. 42 176–190.

    Article  Google Scholar 

  • Chetty T R K, Yellappa T and Santosh M 2016 Crustal architecture and tectonic evolution of the Cauvery Suture Zone, southern India; J. Asian Earth Sci. 130 166–191.

    Article  Google Scholar 

  • Clark D B, Mac Donald M A and Tate M C 1997 Late Devonian mafic-felsic magmatism in the Meguma zone, Nova Scotia; The nature of magmatism in the appalachian orogeny (eds) Krishan Sinha A, Joseph B Whalen and Jhon P Hogan, pp. 107–128.

  • Clark C, Collins A S, Kinny P D, Timms N E and Chetty T R K 2009 SHRIMP U–Pb age constraints on the age of charnockite magmatism and metamorphism in the Salem Block, southern India; Gondwana Res. 16 27–36.

    Article  Google Scholar 

  • Collins A S 2003 Structure and age of the Leeuwin Complex, Western Australia: Constraints from field mapping and U–Pb isotope analysis; Austr. J. Earth Sci. 50 585–599.

    Google Scholar 

  • Collins W J and Sawyer E W 1996 Pervasive granitoid magma transfer through the lower-middle crust during non-coaxial compressional deformation; J. Metamor. Geol. 14(5) 565–579.

    Article  Google Scholar 

  • Collins A S and Windley B F 2002 The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana; J. Geol. 110 325–340.

    Article  Google Scholar 

  • Collins A S and Pisarevsky S A 2005 Amalgamating eastern Gondwana: The evolution of the Circum-Indian orogens; Earth Sci. Rev. 71 229–270.

    Google Scholar 

  • Collins W J, Bearns S D, White A J R and Cheppal B W 1982 Nature and origin of A-type granites with particular reference to southern Australia; Contrib. Mineral. Petrol. 10 189–200.

    Article  Google Scholar 

  • Collins A S, Razakamanana T and Windley B F 2000 Neoproterozoic extensional detachment in central Madagascar: Implications for the collapse of the East African orogen; Geol. Mag. 137 39–51.

    Article  Google Scholar 

  • Collins A S, Santosh M, Kropinski L, Hand M P, Clark C, Sajeev K, McKenzie S and Kinny P D 2006 The Mozambique ocean suture in southern India: Age and significance of granulites in the Palghat–Cauvery Shear Zone System; Presented at AESC2006 Melbourne, Australia.

  • Collins A S, Clark C, Sajeev K, Santosh M, Kelsey David E and Martin H 2007 Passage through India: Mozambique Ocean suture, high pressure granulites and Palghat–Cauvery shear zone system; Terra Nova 19 41–147.

    Article  Google Scholar 

  • Collins A S, Clark C and Plavsa D 2014 Peninsular India in Gondwana: Tetectonothermal evolution of the Southern Granulite Terrain and its Gondwana counterparts; Gondwana Res. 25 190–203.

    Article  Google Scholar 

  • Condie K C 1973 Archean magmatism and crustal thickening; Geol. Soc. Am. Bull. 84 2981–2291.

    Article  Google Scholar 

  • Condie K, Allen P and Narayana B L 1982 Geochemistry of the Archean low- to high-grade transition zone, south India; Contrib. Mineral. Petrol. 81 157—167.

    Article  Google Scholar 

  • Condie K C, Bowling G P and Allen P 1986 Origin of granites in an Archean high-grade terrain, south India; Contrib. Mineral. Petrol. 92 93–103.

    Article  Google Scholar 

  • Condie K C and Kroner A 2013 The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean; Gondwana Res. 23 394–402.

    Article  Google Scholar 

  • David C C and Chappell B W 1992 Petrogenesis of felsic I-type granites: An example from northern Queensland; Geol. Soc. Am. Spec. Paper 83 115–114.

  • De La Roche H, Laterrier J G, Caude P and Marchal M 1980 A classification of volcanic rocks using R1–R2 diagram and major element analyses – its relationships and current nomenclature; Chem. Geol. 29 183–210.

    Article  Google Scholar 

  • Dhanaraju R, Varma H M, Padmanabhan N and Mahadevan T M 1983 I-type and S-type classification of the Precambrian granitoids of southern India and its possible relevance to mineral exploration; In: Precambrian of South India (eds) Naqvi S M and Rogers J J W, Geol. Soc. India Memoir, pp. 389–400.

  • Drury S A, Harris N B W, Holt R W, Reeves Smith G J and Wightman R T 1984 The Precambrian tectonics and crustal evolution in south India; J. Geol. 92 3–20.

    Article  Google Scholar 

  • Eby G N 1992 Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications; Geology 20 641–644.

    Article  Google Scholar 

  • Ellis D J and Thompson A B 1986 Sub-solidus and partialmelting reactions in the quartz-excess \(\text{ CaO }+\text{ MgO }+\text{ Al }_{2}\text{ O }_{3}+\text{ SiO }_{2}+\text{ H }_{2}\text{ O }\) system under water-excess water-deficient conditions to 10 kb: Some implications for the origin of peraluminous melts from mafic rocks; J. Petrol. 27 91–121.

  • El-bialy M Z and Omar M M 2015 Spatial association of Neoproterozoic continental arc-type and post-collision A-type granitoids in the Arabian-Nubian Shield: The Wadi Al-Baroud older and Younger granites, Northeastern Desert, Egypt; J. Afric. Earth Sci. 103 1–29.

    Article  Google Scholar 

  • Eyal M, Litvinovsky B A, Katzir Y and Zanvilevich A N 2004 The Pan-African high-K calc-alkaline peraluminous Elat granite from southern Israel: Geology, geochemistry and petrogenesis; J. Afric. Earth Sci. 40 115–136.

    Article  Google Scholar 

  • Friend C R L and Nutman A P 1991 SHRIMP U–Pb geochronology of the Closepet granite and peninsular gneisses, Karnataka, south India; J. Geol. Soc. India 38 357–368.

    Google Scholar 

  • Friend C R L and Nutman A P 1992 Response of U–Pb isotopes and whole rocks geochemistry to \(\text{ CO }_{2}\) induced granulite metamorphism, Kabbaldurga, Karnataka, South India; Contrib. Mineral. Petrol. 111 299–310.

    Article  Google Scholar 

  • Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J and Frost C D 2001 A geochemical classification for granitic rocks; J. Petrol. 42 2033–2048.

    Article  Google Scholar 

  • Geological Survey of India 1978 Geological Survey of India initiates Potassium–Argon dating; Geol. Surv. India Rev., Central Headquarters, Calcutta.

  • Geological Survey of India 2009 Global correlation of A-type granites and related rocks, their mineralization, and significance in lithosperhic evolution; International Geoscience Programme (IGCP-510) 19–20 March 2010, GSI, Nagpur.

  • Ghani A A, Searle M, Robb L and Chung S L 2013 Transitional I-S type characteristic in the Main Range Granite, Peninsular Malaysia; J. Asian Earth Sci. 76 225–240.

    Article  Google Scholar 

  • Ghosh Subhasish, Balasubramanian E, Nathan N P, Kanishkan B and Krishnan V 1996 Rb–Sr isotopic studies and geochemistry of granitoids and charnockite from Tamil Nadu; Geol. Surv. India Unpubl. Progress Report F.S. 1992–93.

  • Ghosh J G, Zartman R E and de Wit M J 1998 Reevaluation of tectonic framework of southernmost India: New U–Pb geochronological and structural data, and their implication for Gondwana reconstruction; J. Afric. Earth Sci. 27 85–86.

    Google Scholar 

  • Ghosh J G, Maarten De wit R E and Zartman R E 2004 Age and tectonic evolution of neoproterozoic ductile shear zone in Southern Granulite Terrain, India, with implications for Gondwana studies; Tectonics 23 TC3006, https://doi.org/10.1029/2002 2004.

    Article  Google Scholar 

  • Glorie S, De Grave J, Singh T, Payne J L and Collins A S 2014 Crustal root of the Eastern Dharwar Craton: Zircon U–Pb age and Lu–Hf isotopic evolution of the East Salem Block, southeast India; Precamb. Res. 249 229–246.

    Article  Google Scholar 

  • Gopalakrishnan K 1994 An overview of southern granulites terrain of Tamil Nadu: Constraints in reconstruction of Precambrian assembly of Gondwanaland; Gondwana \(9^{th }\) Int. Gondwana Symp., Oxford & IBH Publications Co. Ltd., 2, 1003–1026.

  • Harris N B W, Santosh M and Taylor P N 1994 Crustal revolution in south India: Constraints from Nd-isotopes; J. Geol. 102 139–150.

    Article  Google Scholar 

  • Hussain S M, Narayana B L and Naqvi S M 1996 Plagiogranitic differentiates from ultramafic–mafic–felsic suite along Cauvery suture at Manamedu in the granulite terrain of south India; Proc. of IX Convention of Indian Geology Congress 1996, pp. 155–160.

  • Jackson N J, Walsh J N and Pegram E 1984 Geology, geochemistry and petrogenesis of late Precambrian granitoids in the Central Hijaz region of the Arabian Shield; Contrib. Mineral. Petrol. 87 205–219.

    Article  Google Scholar 

  • Jacobs J, Bauer W and Fanning C N 2003 Late Neoproterozoic/early Paleozoic events in central Droning Maud Land and significance for the southern extension of the East African orgen into East Antarctica; Precamb. Res. 126 27–53.

    Article  Google Scholar 

  • Janardhan A S, Jayananda M and Shankara M A 1994 Formation and tectonic evolution of granulites from the Biligirirangan and Nilgiri hills, south India: Geochemical and isotopic constraints; J. Geol. Soc. India 44 27–40.

    Google Scholar 

  • John M, Manish Balakrishnan S and Bhadra B K 2005 Contrasting metamorphism across Palghat–Cauvery Shear Zone, south India; J. Earth Syst. Sci. 114(2) 143–158.

    Article  Google Scholar 

  • Kohler H and Srikantappa C 1996 Age and origin of enderbites from the Nilgiri Hills massif, S. India; V.M. Goldschmidt Conf. March \(31^{{\rm st}}\)–April \(4^{{\rm th}}\), 1996, Heidelberg, Germany.

  • Koizumi T, Tsunogae T, Santosh M, Tsutsumi Y, Chetty T R K and Saitoh Y 2014 Petrology and zircon U–Pb geochronology of metagabbros from a mafic-ultramafic suite at Aniyapuram: Neoarchean to Early Paleoproterozoic convergent margin magmatism and Neoproterozoic high-grade metamorphism in southern India; J. Asian Earth Sci. 95 51–64.

    Article  Google Scholar 

  • Kriegsman L M 1995 The Pan-African event in east Antarctica: A view from Sri Lanka and the Mozambique Belt; Precamb. Res. 75 263–277.

    Article  Google Scholar 

  • Krishna A K, Murthy M N and Govil P K 2007 Multi-element analysis of soils by wave length-dispersive X-ray fluorescence Spectrometry; Atomic Spectr. 28(6) 202–214.

    Google Scholar 

  • Krogstad K J and Hanson G N 1988 U–Pb ages and Sr–Pb and Nd–Isotope data gneisses near the Kolar Schist belt: Evidences for the juxtaposition of discrete Archean Terrains; J. Geol. Soc. India 3(1) 60–62.

    Google Scholar 

  • Kroner A 1980 Pan-African crustal evolution; Episodes 2 3–8.

    Google Scholar 

  • Kroner A and Stern R J 2004 Pan-African orogeny; Encyclopedia of Geology, vol. 1, Elsevier, Amsterdam.

  • Kroner A, Windley B F, Jaeckel P, Brewer T S and Razakamanana T 1999 New zircon ages and regional significance for the evolution of the Pan-African orogen in Madagascar; J. Geol. Soc. London 156 1125–1135.

    Article  Google Scholar 

  • Kroner A, Hegner E, Collins A S, Windley B F, Brewer T S, Razakamanana T and Pidgeon R T 2000 Age and magmatic history of the Antananarivo Block, Central Madagascar, as derived from zircon geochronology and Nd isotope systematics; Am. J. Sci. 330 251–258.

    Article  Google Scholar 

  • Kusky T M, Abdelsalam M, Stern R J and Tucker R D 2003 Evolution of the East African and related orogens and the assembly of Gondwana; Precamb. Res. 123 82–85.

    Article  Google Scholar 

  • Mallikharjuna Rao J, Suresh Raj T and Rama Rao 2005 Petrology and geochemistry of Puliampatti and Pollachi–Udumalpet granites of southern granulite terrain and their tectonic implications; J. Appl. Geochem. 7 256–270.

    Google Scholar 

  • Maniar P D and Piccoli P M 1989. Tectonic discrimination of granitoids; Geol. Soc. Am. Bull. 101 635–643.

    Article  Google Scholar 

  • McWilliams M O 1981 Paleomagnetism and Precambrian tectonic evolution; In: Precambrian plate tectonics (ed.) Kroner A, Amsterdam; Elsevier, pp. 642–687.

  • Meert J 2003 A synopsis of events related to the assembly of eastern Gondwana; Tectonophys. 362 1–40.

    Article  Google Scholar 

  • Meert J G and Van der Voo R 1997 The assembly of Gondwana 800–550 Ma; J. Geodyn. 23 223–236.

    Article  Google Scholar 

  • Miller J S, Santosh M, Pressley R A, Clemens A S and Rogers J J W 1996 A Pan-African thermal event in southern India; J. South East Asian Earth Sci. 14 127–136.

    Article  Google Scholar 

  • Meissner B, Deters P, Srikatappa C and Kohler H 2002 Geochronological evolution of the Moyar, Bhavani and Palghat shear zones of southern India: Implications for east Gondwana correlations; Precamb. Res. 114 149–175.

  • Monard J R 1983 Evolution of sialic terrains in the vicinity of the Holenarsipur belt, Hassan District, Karnataka, India; In: Precambrian South India (eds) Naqvi S M and Rogers J J W, Geol. Soc. India Memoir 4 343–364.

  • Naqvi S M and Rogers J J W 1987 Precambrian geology of India; Oxford University Press, New York, 223p.

    Google Scholar 

  • Nathan N P, Krishna Rao A V, Bhalla J K, Balasubramanian E, Subramanian N, Oberoi L K, Natarajan V, Gopalakrishna K and Raman R 1994 Geochemistry and geochronology of the pegmatoidal granite of Sankari–Tiruchengodu area, Tamil Nadu; Ind. Mineral. 48 113–123.

    Google Scholar 

  • Nathan N P, Balasubramanian E, Ghosh S and Ray Barman T 2001 Neoproterozoic acid magmatism in Tamil Nadu, south India: Geochemical and geochronological constituents; Gondwana Res. 4 714–715.

    Article  Google Scholar 

  • Noack N M, Kleinschrodta R, Kirchenbaura M, Fonsecab R O C and Munker C 2013 Lu–Hf isotope evidence for Paleoproterozoic metamorphism and deformation of Archean oceanic crust along the Dharwar Craton margin, southern India; Precamb. Res. 233 206–222.

    Article  Google Scholar 

  • O’Connor J T 1965 A classification for quartz rich igneous rocks based on feldspar ratios; Proceeding Paper U.S. Geol. Surv. 525B 79–84.

  • Odom A L 1982 Isotope age determinations of rock and mineral samples from Kerala, India; Unpublished Final Report UN Case No 81-10084 KMEDP Trivandrum, 10.

  • Pandey B K, Krishna V, Sastry D V L N, Chabria T, Mary K K and Dhanaraju R 1993 Pan-African whole-rock Rb–Sr isochron ages for the granites and pegmatites of Kullampatti–Suriyamalai area, Salem District, Tamil Nadu, India; VI Nat. Symp. Mass spectrometry, Ind. Inst. Petroleum, Dehradun, Abst. vol., pp. 480–482.

  • Pandey U K, Chabria T and Veena Krishnamurthy P 1994 Rb–Sr geochronology of late Proterozoic A-type granites in parts of Madurai district, Tamil Nadu: Implications on uranium, rare earth, rare metal distributions; J. Atomic Mineral. Sci. 2 79–87.

    Google Scholar 

  • Pandey U K, Pandey B K and Krishnamurthy P 2005 Geochronology (Rb–Sr, Sm–Nd and Pb–Pb) of the Proterozoic granulitic and granitic rocks around Usilampatti, Madurai District, Tamil Nadu: Implications on age of various lithounits; J. Geol. Soc. India 66 539–551.

    Google Scholar 

  • Paquette J L, Nédélec A, Moine B and Rakotondrazafy M 1994 U–Pb single zircon Pb evaporation and Sm–Nd isotopic study of a granulite domain in SE Madagascar; Earth Planet. Sci. Lett. 155 45–56.

    Google Scholar 

  • Patino Douce A E 1997 Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids; Geology 25(8) 743–746.

    Article  Google Scholar 

  • Patino Douce A E 1999 What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Understanding granites: Integrating new and classical techniques (eds) Castro A, Fernandez C and Vigneressc J L, Geol. Soc. London Spec. Publ. 168 55–75.

  • Patino Douce A E and Harris N 1998 Experimental constrains on Himalayan anatexis; J. Petrol. 39 698–710.

    Article  Google Scholar 

  • Pearce J A, Harris N B W and Tindle A G 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks; J. Petrol. 25 956–983.

    Article  Google Scholar 

  • Pearce J A 1996 Source and setting of granitic rocks; Episodes 19 120–125.

    Google Scholar 

  • Peucat J J, Vidal P, Bernard-Gmffiths J and Conde K C 1989 Sr, Nd and Pb isotopic systems in the Archean low- to high-grade transition zone of southern India: Syn-accretion vs. post-accretion of granulites; J. Geol. 97 537–550.

    Article  Google Scholar 

  • Peucat J J, Mahabhaleswar B and Jayananda M 1993 Age of younger tonalitic magmatism and granulite metamorphism in the south India transition zone (Krishnagiri area): Comparision with older peninsular gneisses from Hassan–Gorur area; J. Metamor. Geol. 11 879–888.

    Article  Google Scholar 

  • Peucat J J, Jayananda M, Chardon D, Capdevilla R, Fanning C M and Paquette J L 2013 The lower crust of the Dharwar Craton, southern India: Patchwork of Archean granulitic domains; Precamb. Res. 227 4–28.

  • Pitcher W S 1993 The nature and origin of Granites; Chapman and Hall, London.

    Book  Google Scholar 

  • Plavsa D, Collins A S, Foden J F, Kropinski L, Santosh M, Chetty T R K and Clark C 2012 Delineating crustal domains in peninsular India: Age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block; Precamb. Res. 198–199 77–93.

    Article  Google Scholar 

  • Ragland P C 1989 Basic analytical petrology; Oxford University Press, New York.

    Google Scholar 

  • Rai S S, Srinagesh D and Gaur V K 1993 Granulite evolution in south India: A seismic tomographic prospective; Geol. Soc. India Memoir 25 235–264.

    Google Scholar 

  • Rajesh H M 2000 Characterization and origin of compositionally zoned aluminous A-type granite form south India; Geol. Mag. 137(3) 291–318.

    Article  Google Scholar 

  • Rajesh H M 2004 The igneous charnockite-high-K alkali-calcic I-type granite-incipient charnockite association in Trivandrum Block, southern India: Contrib. Mineral. Petrol. 147 346–362.

    Article  Google Scholar 

  • Rajesh H M 2008 Petrogenesis of two granites from the Nilgiri and Madurai Blocks, southwestern India: Implications for charnockite-calc-alkaline granite and charnockite-alkali (A-type) granite link in high-grade terrains; Precamb. Res. 162(1) 180–197.

    Article  Google Scholar 

  • Rajesh H M and Santosh M 1996 Alkaline magmatism in Peninsular India; In: The Archean and Proterozoic terrains in southern India within East Gondwana (eds) Santosh M and Yoshida M, Gondwana Res. Memoir 3 91–115.

  • Rajesh H M, Santosh M and Yoshida M 1996 The felsic magmatic province in East Gondwana: Implications for Pan-African tectonics; J. Southeast Asian Earth Sci. 14(3–4) 275–291.

    Article  Google Scholar 

  • Ramakrishnan M 1991 Evolution of the high-grade terrains of southern India and Sri Lanka; Proceedings (Abstract) of symposium on “Composition and evolution of high-grade gneiss terrains”, Kandy, Sri Lanka, pp. 57–59.

    Google Scholar 

  • Ramakrishnan M 2003 Craton-mobile belt relations in southern granulite terrain; Geol. Soc. India Memoir 50 1–24.

    Google Scholar 

  • Ramakrishnan M and Vaidyanathan 2008 Geology of India; Vol. 1, Geol. Soc. India, Bangalore.

  • Ratheesh Kumar R T, Santosh M, Yang Q Y, Ishwar-Kumar C, Song Chen N and Sajeev K 2016 Archean tectonics and crustal evolution of the Biligiri Rangan Block, southern India; Precamb. Res. 275 406–428.

    Article  Google Scholar 

  • Roy M and Dhanaraju R 1999 Petrogenetic model of A-type granitoids of the Kullampatti area, Salem district, Tamil Nadu, India; Gondwana Res. 2(1) 127–135.

    Article  Google Scholar 

  • Roy P, Balaram V, Satyanarayan M and Gnaneswara Rao T 2007 New REE and trace element data on two kimberlite reference materials by ICP-MS; Geost. Geoanal. Res. 31 261–273.

    Article  Google Scholar 

  • Rundick R L 1991 Restites, Eu anomalies and the lower continental crust; Geoch. Cosmoc. Act. 56 963–970.

    Google Scholar 

  • Rushmer T, Brown M and Bergantz G 1998 Penrose Conference Report: Processes of crustal differentiation: Crust–mantle interactions, melting and granite migration through the crust; July 4–11, 1998.

  • Saitoh Y, Tsunoga T, Santosh M, Chetty T R K and Horie K 2011 Neoarchean high-pressure metamorphism from the northern margin of the Palghat–Cauvery Suture Zone, southern India: Petrology and zircon SHRIMP geochronology; J. Asian Earth Sci. 42(3) 268–285.

    Article  Google Scholar 

  • Samuel V O, Santosh M, Liu S, Wang W and Sajeev K 2014 Neoarchean continental growth through arc magmatism in the Nilgiri Block, southern India; Precamb. Res. 245 146–173.

    Article  Google Scholar 

  • Santosh M 1996 The Trivandrum and Nagercoil granulite blocks; In: The Archean and Proterozoic terrains of southern India within East Gondwana (eds) Santosh M and Yoshida M, Gondwana Res. Memoir 3 243–278.

  • Santosh M and Nair N G K 1983 Petrochemistry of the Chenganoor granite, Alleppey district, Kerala; J. Geol. Soc. India 24 291–298.

    Google Scholar 

  • Santosh M and Drury S A 1988 Alkali granites with Pan-African affinities from Kerala, south India; J. Geol. 96 616–626.

    Article  Google Scholar 

  • Santosh M and Sajeev K 2006 Anticlockwise evolution of ultrahigh-temperature granulites within continental collision zone in southern India; Lithos 92 447–464

    Article  Google Scholar 

  • Santosh M, Nair N G K, Pandey K and Gopalan K 1986 Rb–Sr geochronology of the Ambalavayal granite, Kerala; J. Geol. Soc. India 27 309–312.

    Google Scholar 

  • Santosh M, Iyer S S, Vasconcellos M B A and Enzweiler J 1989 Late Precambrian alkaline plutons in southwest India: Geochronological and rare-earth element constraints on Pan-African magmatism; Lithos 24 65–79.

    Article  Google Scholar 

  • Santosh M, Rajan P K and Nair N G K 1993 The Pariyaram granite, Trichur district, Kerala – its petrochemistry; Bull. Indian Geol. Assoc. 16 33–43.

    Google Scholar 

  • Santosh M and Yoshida M 2001 Pan-African extensional collapse along the Gondwana Suture; Gondwana Res. 4(1) 188–191.

    Article  Google Scholar 

  • Santosh M, Tanaka T, Yokoyama K and Collins A S 2005 Late Neoproterozoic-Cambrian felsic magmatism along transcrustal shear zones in southern India: U–Pb electron microprobe ages and implications for the amalgamation of the Gondwana Supercontinent; Gondwana Res. 8 31–42.

    Article  Google Scholar 

  • Santosh M, Maruyama S and Sato K 2009 Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India; Gondwana Res. 16(2) 321–341.

    Article  Google Scholar 

  • Santosh M, Xiao W J, Tsunogae T, Chetty T R K and Yellappa T 2012 The Neoproterozoic subduction complex in southern India: SIMS zircon U-Pb ages and implications for Gondwana assembly; Precamb. Res. 192–195 190–208.

    Article  Google Scholar 

  • Santosh M, Shaji E, Tsunogae T, Ram Mohan M, Satyanarayanan M and Horie K 2013 Neoarchean suprasubduction zone ophiolite from Agali hill, southern India: Petrology, zircon SHRIMP U-Pb geochronology, geochemistry and tectonic implications; Precamb. Res. 231 301–324.

    Article  Google Scholar 

  • Santosh M, Yang Q Y, Shaji E, Tsunogae T, Ram Mohan M and Satyanarayanan M 2015 An exotic Mesoarchean microcontinent: The Coorg Block, southern India; Gondwana Res. 27(1) 165–195.

    Article  Google Scholar 

  • Santosh M, Yang Q Y, Shaji E, Ram Mohan M, Tsunogae T and Satyanarayanan M 2016 Oldest rocks from peninsular India: Evidence for Hadean to Neoarchean crustal evolution; Gondwana Res. 29(1) 105–135.

    Article  Google Scholar 

  • Santosh M, Nan Hu C, Fang He X, Shan Li S, Tsunogae T, Shaji E and Indu G 2017 Neoproterozoic arc magmatism in the southern Madurai Block, India: Subduction, delamination, continental outbuilding, and the growth of Gondwana; Gondwana Res. 45 1–42.

    Article  Google Scholar 

  • Sato K, Santosh M, Tsunogae T, Chetty T R K and Hirata T 2011 Laser ablation ICP mass spectrometry for zircon U–Pb geochronology of metamorphosed granite from the Salem Block: Implication for Neoarchaean crustal evolution in southern India. J. Miner. Petrol. Sci. 106 1–12.

    Article  Google Scholar 

  • Sato K, Santosh M, Chetty T R K and Hirata T 2012 U–Pb zircon geochronology of granites and charnockites from southern India: Implications for magmatic pulses associated with plate tectonic cycles within a Precambrian suture zone; Geol. J. 47(2–3) 237–252.

    Article  Google Scholar 

  • Sawyer E W 1994 Melt segregation in the continental crust; Geology 22 1019–1022.

    Article  Google Scholar 

  • Shackelton R M 1986 Precambrian collision tectonics in Africa. In: Collision tectonics (eds) by Coward M P and Ries A C, Geol. Soc. London Spec. Publ. 19 329–349.

  • Sun S S and Nesbitt R W 1978 Petrogenesis of Archean ultrabasic and basic volcanics. Evidence from rare earth elements; Contrib. Contrib. Mineral. Petrol. 65 301–328.

    Article  Google Scholar 

  • Sun S S and Mc donough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications of mantle composition and processes; Geol. Geol. Soc. London Spec. Publ. 42 313–345.

    Article  Google Scholar 

  • Teale W, Collins A, Foden J, Payne J, Plavsa D, Chetty T R K, Santosh M and Fanning M 2011 Cryogenian (\(\sim \) \( 830~\text{ Ma }\)) mafic magmatism and metamorphism in the northern Madurai Block, southern India: A magamtic link between Sri Lanka and Madagascar; J. Asian Earth Sci. 42 223–233.

    Article  Google Scholar 

  • Thampi P K, Nair P K R and Balasubramonian G 1993 Petrochemistry and tectonic evolution of Munnar granite, Idukki district, Kerala; Curr. Sci. 64 238–243.

    Google Scholar 

  • Tsunogae T, Santosh M and Dubessy J 2008 Fluid characteristics of high- to ultrahigh-temperature metamorphism in southern India: A quantitative Raman spectroscopic study; Precamb. Res. 162 198–211.

    Google Scholar 

  • Tuttle O F and Bowen N 1958. Origin of granite in the light of experimental studies in the system \(\text{ NaAlSi }_{3}\text{ O }_{8}{-}\text{ KAlSi }_{3}\text{ O }_{8}{-}\text{ SiO }_{2}{-}\text{ H }_{2}\text{ O }\); Geol. Soc. Am. Memoir 74 153.

    Google Scholar 

  • Unrug R 1996 The assembly of Gondwanaland land; Episodes 19 11–20.

    Google Scholar 

  • Viswanathan T V, Gopalakrishnan K, Ganesan T M and Raman R 1990 Cauvery suture zone – its implications; Group Discussion on Suture Zones – Young and Old, Wa-dia Institute of Himalayan Geology, Geol. Surv. India Extended abstract, Dehradun, pp. 47–54.

  • Whalen J B, Currie K L and Chappell B W 1987 A-type granites: Geochemical characteristics, discrimination and petrogenesis; Contrib. Mineral. Petrol. 95 407–419.

    Article  Google Scholar 

  • Whalen J B, Jenner G A, Longstaffe F J, Gariépy C and Fryer B J 1997 Implications of granitoid geochemical and isotopic (Nd, O, Pb) data from the Cambrian–Ordovician Notre Dame arc for the evolution of the Central Mobile belt, Newfound land Appalachians; Geol. Soc. Am. Memoir 191 367–395.

    Google Scholar 

  • Windley B F, Razafiniparany A, Razakamanana T and Ackermund D 1994 Tectonic framework of the Precambrian of Madagascar and its Gondwana connections: A review and reappraisal; Geol. Rund. 83 642–659.

    Article  Google Scholar 

  • Yellappa T, Chetty T R K, Tsunogae T and Santosh M 2010. Manamedu complex: Geochemical constraints on Neoproterozoic suprasubduction zone ophiolite formation within Gondwana suture in southern India; J. Geodyn. 50 268–285.

    Article  Google Scholar 

  • Yellappa T, Santosh M, Chetty T R K, Sanghoon Kwon, Chansoo Park, Nagesh P, Mohanty D P and Venkatasivappa V 2012 A Neoarchean dismembered ophiolite complex from southern India: Geochemical and geochronological constraints on its suprasubduction origin; Gondwana Res. 21 245–265.

    Article  Google Scholar 

  • Yellappa T, Venkatasivappa V, Koizumi T, Chetty T R K, Santosh M and Tsunogae T 2014 The mafic–ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics; J. Asian Earth Sci. 95 81–98.

Download references

Acknowledgements

The authors wish to thank the Director, NGRI, Hyderabad for the encouragement and support during the progress of the work. We are thankful to our colleagues Dr. A Keshava Krishna and Dr. M Satyanarayanan for their help in geochemical analysis. We are also very much thankful to anonymous reviewers for their helpful suggestions to improve the paper. This work also forms a part of Department of Science and Technology,Government of India, sponsored project(Ref: SR/FTP/ES-61/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Yellappa.

Additional information

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yellappa, T., Rao, J.M. Geochemical characteristics of Proterozoic granite magmatism from Southern Granulite Terrain, India: Implications for Gondwana. J Earth Syst Sci 127, 22 (2018). https://doi.org/10.1007/s12040-018-0923-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-0923-6

Keywords

Navigation